A Symbol

for

Continued Proportionality

14 May 2021
Virtuellen Tag zur
Mathematikgeschichte

Hildesheim

Staffan Rodhe
Uppsala, Sweden
staffan.rodhe@gmail.com

What is Continued Proportionality?

Geometric

A, B and C are in a continued proportion:

$$
\begin{aligned}
& \text { A.B }:: \text { B.C } \\
& \frac{A}{B}=\frac{B}{C} \\
& A C=B^{2}
\end{aligned}
$$

$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \ldots$ are in a continued proportion:

$$
\begin{gathered}
\text { A.B :: B.C :: C .D :: ... } \\
\frac{A}{B}=\frac{B}{C}=\frac{C}{D}=\cdots
\end{gathered}
$$

Arithmetic

$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \ldots$ are in continued proportion:

$$
B-A=C-B=D-C=\cdots
$$

When of Several Quantities the $\left\{\begin{array}{l}\text { Difference } \\ \text { Quotient }\end{array}\right\}$ of the 1 It. and 2 d . is the fame with that of the 2 d . and 3d. they are said to be in a Continued $\left\{\begin{array}{l}\text { Arithmetic } \\ \text { Geometric }\end{array}\right\}$ Proportion.
Thus, $\left\{\begin{array}{l}a, a+d, a+2 d, a+3 d, a+4 d, \\ a, a-d, a-2 d, a-3 d, a-4 d,\end{array}\right\}$ ஞ. is a Series of Continued Arithmetic Proportionals, whole Common Difference is d.

is a Series of Continued Geometric Proportionals, whole
Common Maul. riptior is or whole Ra- $\left\{\begin{array}{lll}\text { r to } \\ \text { to is that of } \\ r & \text { to }\end{array}\right\}$.

Synop/fis Palmariorum Matbefoos: 0 R, A
 New Introduction то The MATHEMATICS:
 Containing the PRINCIPLES 0 F
 Aritbmetic \& Geometry
 Demonstrated, In a Short and Eafie Methol;
 W ITH

Their Application to the mof U'eful Parts thereof: As, Refiotiving of Equations, lufinite Series, Making the L-gnitims ; Inter, si, Simple ard Compound; The Chit Poperties of the Conc Sections ; Manfuration of swlacs and soliss;
 ganometry; The Laws of Motion apply'd to Meclanaic Powers, Ganme y, ace.
D.fign'd for the Benefit, andialupel to the Capacities of BEGINNERS.
By W. $\mathcal{F} 0 \mathrm{NES}$.
LO NDON: Printed by F. Mathews for Foff. Wa!e at the Angel in St. Paul's Church-Yard, 1706.

Chap. 1. Palmariorum Mathefeos. 57
Therefore, in any Geometric Proportion, when the Antecedent is $\left\{\begin{array}{l}\text { lefs } \\ \text { greater }\end{array}\right\}$ than the Confequent, the Terms may be exprefs'd by $\left\{\begin{array}{l}a \text { and } a r \\ a \text { and }-\frac{a}{r}\end{array}\right\}$.

Definition. III.

Hofe Quantities whofe Excefs or Quos
tients are the Same, are call'd Proportionals.
CASE. I.

When of Several Quanttries the \{Difference $\}$ Quotient $\}$ 1 ft . and 2 d . is the fume with that of the 2 d . and 3d. they are faid to be, in a Continued \{Arithmetic Geometric $\}$ Proporton.
Thus, $\left\{\begin{array}{l}a, a+d, a+2 d, a+3 d, a+4 d, \\ a, a-d, a-2 d, a-3 d, a-4 d,\} \text {. }\end{array}\right\}$
is a Series of Continued Ayitbmetic proportionals, whofe Common Difference is d.

is a Series of Continued Geomeeric Proportionals, whofe

Note, That the Sign \div : Signifies Convinued Proportion.

The Explication of the Signs and Cbavacters ufed in this Treatife.

「Equality, or equal to. Majority, or greater than. Minority, or lefs than. More, or to be added.
$\{L e f s$, or to be fubtracted. The Difference or Excefs. Multiplied by.
Radicality.
LContinual Proportion.
Other Signs or Abbreviations of Words that occur, are explain'd in their own Flaces.

And in three continual Proportionals, The fquare of the Middle deyided by one of the ε xtremes, gives the ather: For if A.B.C \cdots, (that is, A.R: B.C, and therefore $\mathrm{BB}=\mathrm{AC}$;) then (dividing both by $\mathrm{A} ; \rightarrow \frac{\mathrm{BB}}{\mathrm{A}}=\operatorname{C.Or}$ (both byC) $\frac{B \mathrm{~B}}{\mathrm{C}}=\mathrm{A}$.

Thefe therefore will be in continual Proportion.

$$
a \cdot b \cdot \frac{b b}{a} \cdot \frac{b b b}{a b} \cdot \frac{b^{4}}{a^{3}} \cdot \frac{b s}{b+}+8 c . \div \div
$$

Mr. William Oughtred's

 K E YOF THE Mathematicks.

Newly Tranlated from the Belt EDITION

With NOTES,

Rendring it Earle and Intelligble to less Skilful Readers.
K in which alto, K゚rliycti Some PROBLEMS
Left Unanfiter'd by the Author are Refolv'd. Absolutely neceflary
For all Gagers, Surveyors, Gunner's, MilitaryOfficers, Mariners, \&c.

Recommended by Mr. E. HALLey, Fellow of the Royal Society.

Y: O: L ONDON:'MM. Printed for Toby salutary, at the Rising. Sums in Cornbil. M DC XC IV.
it requires the fourch terme to be : the leffer it is, the greater.
8. Continued proportion \div, is wher all the middle terms between the firlt and the laft, are both conf. quents and antecedents of Rations: as $8, \mathrm{I} 2,18,27$, are \because For $8.12: 12.12 .18: 18.27$.

$$
\text { Alfo } 0, \rho, \frac{\beta q}{a} \frac{\beta c,}{a q} \frac{\beta q q}{\alpha c}, \frac{k q c}{a q q} \delta c \cdot \text { are } \because
$$

Wherefore if in this fories, the laft terme be a; and the fumme of all the terms of the whole progreffion be Z : then $Z-\sigma$ will be the fumme of all the antecedents; and $Z-\alpha$, the fum of all the confequents.
9. If foure magritudes be proportionall, A.a:i: B. β. they thall alfo be proportionall being Alterned and Inverted, and Compounded, and Divided, and Converted, and in Mixture.

A $\alpha:$: $B . f$.
Altern.

$$
\text { A. B:: }: 0.0 .
$$

Invert. $\alpha, A: B \cdot B$.
Compound. $A+x . a:$: + +8. 2.
or. $A+B . B:: \alpha+B, \beta$.
IV id. $\mathrm{A}-\alpha \cdot x: \mathrm{B}-\beta \cdot \mathrm{R}$.
or. A-B.B: $: \alpha-\beta \cdot 3$.
Convert. A.A $\pm x:$: B. $\mathrm{B}+\%$
or. $A \cdot A \pm B:: c, a+B \cdot$
In Mixture: $A+\bar{x} \cdot A-\alpha_{2}: \bar{B}+\beta \cdot B-\beta:$
or. $A+B \cdot A-B:: a+3, \alpha-\beta \cdot$
ro.If never fo many magnitudes be proportionall it thall be as one of the antecedents is to itt confe quent
guent; fo the fumme of the antecedents to the famme of the confequents. If it be $A, \alpha:: B, B: C, \gamma:: D_{j} f:$ Then will $A \cdot \alpha: A+B+C+D . \alpha+\beta+\gamma+\delta$.
$\int A \cdot x: B . ?$ and compounded.

Alfo in continuall proportionalls, $\alpha, \beta_{:}: Z-a_{i} Z-\alpha$. Wherefore $\alpha Z-\alpha q=\beta Z-\alpha_{0}$ or $\beta Z-\alpha Z=\beta_{\omega-\alpha} q$.Hence by the way we may fee how to finde the funme of all the termes $\because-$, or of progreffion Geometricall, by Qhis rale $\}^{\beta \omega-a q}=Z$.
ir. If the antecedents of many proportions bee tquall; then as one of the antecedents is to the fumme of his confequents; fo will the other antecedent bee oo the fumme of hissLet itbe A, B:: α, β.and A.C:: α, γ. and A.D: $\cdot \alpha, \delta$. Then $A \cdot B+C+D:: \alpha \cdot b+\gamma+\delta$, it appecia eth out of the former demonftration, the terms being lternly placed.
i2. If the confequents of two Rations be equall, they are as their Antecedents: Buc if the Antecedents be equall, they are reciprocally as their comequents.

$$
3: 9.9 \text { And } 5: 9.9
$$

13. If twice foure magnitudes be alike proportion all; then both their fummes and allo their differenes fhall be proportionall.
14.If foure proportionall magnitudesbe multiplied rdivided by foure other proporcionall magnicudes; heir products or quotients fhall alfo be proportional.

C 2
15. The

Early English Books Online, Copyright © 2019 ProQuest LLC Images reproduced by courtesy of British Library

12 CLAVIS MATHEMATICEE. rorum autem ad feinuicem hahitudo invenitur diuidendo antecedentem per confequentem, ve 31 ad 7 ratio eff 4 , hoc eil quadrupla fupertripartiens fep.
 4. dupla \& téqui quarta.
${ }^{2}$ Quare finumerus duos numeros multiplicet; fati erunt mukitiplicatis proportionales. En fipmamer rus daos mimetos dividat; quoti crean diutis pro. portionales.

3 Si quatuor numeri ifint proportionales, factur ab curemis aquareur facto a medj\}s. vitia his quia $9.9 .: 28.36 \mathrm{erint}_{7 \times 9} \times 2 \times 28$. \& quiaR.S:: \mathbf{Z} A, crit RA $=2 S$.
4 Hinc fequirur aurea (q ux disitur) regula proportionis: Sitribuanurterss datic; reetangulumfob fecundo \& etetion adplicerar ad peimum: hoc eft, fi Kecundus multiplicet terciam, $\&$ primas dividat taCtum: quatue crit cribus dakis quattus proportio-
nalis.
7. 9:: 38.36.

$$
\text { 7) }-\frac{2}{2 \leq 2} 35
$$

$$
\begin{aligned}
& 5.12:: 8.19 \frac{1}{6} \\
& 5) \frac{2(10!}{96} \\
& \text { 50 }
\end{aligned}
$$

 R.S: $\mathrm{Z}, \mathrm{A}: \mathrm{crit}_{\mathrm{K}}^{\mathrm{zs}}=\mathrm{A}$.

5 E tribus numeris datis ad quartum proportionalemitueniendumis terminusis, per quem fit quas. Aio, in proportione diretta ef fecundus, veltercius:

CLAVIS MATHEMATICeA, at in proportione reciproca femper eft primas.
6 Directa quidemproportio eit, quandoterninus is per quern tir quallio, quò raior eft, có quarcum maiorem requirit: \& quó minor, to minorem.
7 Reciproca p:oportio ef, quando ecravisus is per quem tit que trio quò maicr elt to quartum minorem requirit: X q \mathbf{q} òminor, có maiorem.

8 Propostio cobishua \div efl, quando rermini omnes medij inter primum \& vitimum, sationum funt tumconfequentes, cum antecedentes. vt 8.12. 28.27 .1 tem

9. Si quatuor numori (inn proportionales A. a :: 13. 3: eriam alternc̀, \& inueffe, \& compofitè, \&' divi-
 uerfè pro- finucrfe, \quad a $A:: B . \mathrm{B}$. pertionales compolite, $\mathrm{A}+\alpha, a:: \mathrm{B}+\beta, \beta$. crune divifing, $A-a, a: B-B, B$: Connerfe, $A . A+\alpha:: B . B+B$,
10 Siquodibet numeri fint proparionales: crit
 ma antecedentium, ad fummam cornfoquentium. Efo A. $\alpha:$: $, \beta:$:,γ : erit $A, a: A+B+C$. $a \neq \beta+\gamma$.
II Si plueizra praportionuma antecedences fint xquales: erit to vnes antecedens ad furmmam firorum confequentiuns, fic alier antecedeas an fummam fuorum. Efto $A, B:$:ixe $: \& A, C: ;, \gamma$: Eric

54 CLAVIS MATHEMATICE: max ${ }^{7}$ ' tumaddendum eft tum auferendum;

7 S. lines vicunque fectamultiplicecur in alenutrunt faum tegmentum : rectangulumillad dapliar. tum, plus quadrato alrerius fegmenti, xquale eria quadratis totius $\&$ fegmentr multiplicantis. hoc ell si $Z=A+E: \operatorname{crit} 2 Z A+E q=Z q+A q$. E $22 \mathrm{E}+\mathrm{Aq}=\mathrm{Zq}+\mathrm{Eq}$.
8 Si linea vtcungue fecta multiplicetur in alm. ctrum fuum fegmentum: rectanguhum illud quadre. plicatum, plusquadrato alterius fegmenti, x quale e. sit quadrato linear totius aucta fegmento multipli cante. hocen, $\mathrm{Si} Z=A+E: \operatorname{crit} \mathrm{O} Z \mathrm{Z} 4 \mathrm{~A}:=4 \mathrm{ZA}$ $+E q \cdot \mathrm{EqQ}: Z+E:=4 Z E+A q$.

9 Si linea bifececur \& fecus: quadrata fegmentorom inxqualium firsul duplicia funt quadratorum bifegmenti \& interfegmenti, boc eft, $\mathrm{Si}_{\mathrm{i}} Z=A+F$ erit $\mathrm{Aq}+\mathrm{Eq}-\frac{2}{} \mathrm{Zq}+\mathrm{x} \mathrm{Xq}$.
so Si linea bifecte augeaur: q uadraṭa totius auctz \& augmenti, finnul duplicia funt quadratorum bifg. menti, $\&$ bifegmenti aucti. hocelt, Si $Z=A+E:$: $\operatorname{crit} \mathrm{Zq}+\mathrm{Eq}=\frac{2}{4} \mathrm{Aq}+2 \mathrm{Q} \frac{1}{2} \mathrm{~A}+\mathrm{E}$.

II Datam rectianliteam ita fecare, ve rectangu. lum fubrota \& minorefegmento xquale fir quadra: t.) matoris. hocraodo, $S_{i} Z=A+E$, litque $\sqrt{ } 92 \mathrm{Zq}-\mathrm{Z}=\mathrm{A}:$ crit $Z \mathrm{E}=\mathrm{Aq}$. Nam $\div \mathrm{Zq}$ $-\mathrm{Q}: \mathrm{Z}+\mathrm{A}=\mathrm{Zq}+\mathrm{ZA}+A q$. Quare $Z X$ $+\mathrm{qq}=\mathrm{Zq}=2 \mathrm{~A} \div \mathrm{ZE}$. Ergo.

Atque

Early English Books Online, Copyright @ 2019 ProQuest LLC Images reproduced by courtesy of British Library

CLAVIS MATHEMATICés.

55:
Atque hinc patet modusfecandidatam lincam Z fecundum mediam \& extremam rationem: hoc eftot
 fint $2 . A . E \div$
12 In triangulo $\mathrm{BCD}, \mathrm{fi}$ ang. B fitacutus :
$B C q+B D q=D C q+2 B D \times B A \cdot$ Nam
$B C q-B A q \equiv C A q=D C q-Q: B D-B A$

13 In triangulo $B C D$, fi ang. B fit obrufus: BGq $+\mathrm{BDq}=\mathrm{DCq}-2 \mathrm{BD}+\mathrm{BA}$. $\operatorname{Nam} B C q-B A q=G A q$ 47 CI
$=D C q-Q: B D+B A$
$-B D q-2 B D=B A q$

14 Dato
12. Probl. Three points being given, notlying direct, to draw a circumference through them. 25 e 3.
13. Probl. The Bafe and Cathetus of a rectangled Triangle being given, to finde the Hypotenufe: or to adde a Quadrat to Quadrat.
14. Probl. The Hypotenufe and Bafe of a rectangled Triangle being given,to finde the Cathetus; ct to take a Quadrat out of a Quadrat.
15.Probl. To finde the Ration of Two like Figures; feeke a Third Proportional.
16. Probl. A Figure being given, to frame a like Figare, in a Ration given. Secke a Meane-proportional betweene the Side thereof, and a like Side.
17. Probl. In a circle given to infcribe an ordinate or regular Hexagon. 15 e 4.
18. Probl.In a circle given to infcribe an ordinate Decagon. Cut the Semidiamiter of the Circle after the Extreme and Meane Ration, by ir 2.
19. Probl. In a circle given to infribe an ordinate Pentagon. Seck the Hypotenufe of a retangled Triangle, whofe Bafe is the Side of an Hexagon, and. Cathetus the Side of a Decagon.

Chap. XIX.

Examples of CAnalytical © Equation; for inventing of Theoresses, and refolving of Problemes. ©At zwhich marke (as it were) the Precepts bitberto delivered, do priscipally aime:

Probl.I. THEInvention of in e 2 Namely, to cut \mathbf{B} a Right line given, fo that the Rectangle under the whole B, and the leffer Segnient, may be equall to the Quadrat of the greater Segment.
Let the greater Segment be put A: the leffer fhall be B-A. Draw B-A into B; and there thall bee made $\mathrm{Bq}-\mathrm{BA}=\mathrm{Aq}:$ or $\mathrm{Aq}+\mathrm{BA}=\mathrm{Bq}$. Wherefore $\sqrt{ } \mathrm{u}: \mathrm{Bq}+\frac{1}{4} \mathrm{~Bq}:-{ }_{-}^{2} \mathrm{~B}=\mathrm{A} ;$ by $9 \mathrm{Ch} . \mathrm{XVI}$.

Which Theoreme is expreffed by werds thus: If to the Quadrat of the Line given, be added a quarter of the faid Quadrat ; and from the Quadrat-fide of the Summe, be taken Half the line given; the Remainder fhall be the greater Segment.
Now it is Geomerrically effected thus; Draw $\mathrm{AB}=\mathrm{B}:$ And to it at Right angles, $\mathrm{fet} \mathrm{BC}=1 \mathrm{~B}$; and draw the Hypotenufe AC : It thall be $\mathrm{AC}=\sqrt{ } \mathrm{u}: \mathrm{Bq}+\mathrm{B} \mathrm{Bq}$. Cutoff $\mathrm{CD}=\mathrm{BC}$; And the Remainder Chal beAD $-\sqrt{ } \mathrm{a}: \mathrm{Bq}+\mathrm{Bq}:-\frac{1}{3} \mathrm{~B}$. Lafty ${ }_{2}$ meafure $A E=A D$,for the greater segment:。

Peometrica et Alye.
Gracia.

Analoyiar cars arypationum?
Grain chami polet arolognàpheni Caso aiquatianimis: जt P_{1}

fine $\div f l \frac{a b}{m}+f \div \frac{a m}{2}+n$.
fielinea ginoth fet mitermixite, ahom prugt ila of. pómi miade frabend qpanifilas Ginex vel ue qualite, ef $\frac{a b x}{m}$ olir Given $\frac{a b}{b}$ fi $\frac{a b x}{m} \div \frac{a b}{\partial}$

- cum 'hir aumén operans poter endum mado vibunor
 divpiciner, wigue humer Pimper vernanel eadem anals yán. panter P eskokand whing zancive velin dimexpronir alhiovi + lever. 0 :
fidefinerg analoges anthmehia, if hou per addilioun et röhuctoone, fi. ddio wi füh iakag, venmet lame Comper anolygermithmetio, user Ceomeh:

Analogiae loco aequationum
Quaeri etiam potest analogia statim loco aequationis; ut si linea quaedam quaeratur, pariter altera, tunc illae componi possunt cum signo \because, ut si una linea sit $\frac{a b}{m}+f$ et altera linea $\frac{a m}{d}+n$ tunc ponantur simul cum signo \because fit $\frac{a b}{m}+f=\frac{a m}{d}+n$.

Translation: Proportions instead of equations Instead of an equation a proportion can be immediately searched for; e.g. if a line is searched for and equally another, e.g. if one line is $\frac{a b}{m}+f$ and the other line $\frac{\mathrm{am}}{\mathrm{d}}+\mathrm{n}$ then both can be taken with the symbol $\underset{\approx}{\approx}$ and it becomes $\frac{a b}{m}+f=\frac{a m}{d}+n$.

What does this mean?

Daedalus Hyperboreus

The Nordic Inventor, Emanuel Swedenborg's Scientific Journal

Translated by Göran Appelgren Edited by Staffan Rodhe
An
3. The method is thus: when one has two lines, areas, or bodies and one wishes a proportionality between them, then one takes the algebraic expressions of both and sets them against one another with a so called "signo analogico $\ddot{\because}$ and operates with only divisions and multiplications in the same manner as with equations, until one has reduced both numbers to the smallest fraction. And since multiplication and division do not at all change any geometric analogy it follows thereof that one can see the proportionality of the two lines or bodies in the smallest number.
4. To find what ratio a cube has to an enclosed cylinder, one sets $(\mathrm{d})=$ diameter or the side of the cube, $(\mathrm{c})=$ circumference, and then the volume of the cube is found to be $=$ ddd, and that of the enclosed cylinder $=\frac{d d c}{4}$. Thus one sets ddd $\because \frac{\mathrm{ddc}}{4}$ and uses division and multiplication to obtain a smaller fraction thereof, namely $4 \mathrm{~d} \div \mathrm{c}$; that is in numbers $\frac{14}{11}$ or $14 \div 11$ or as four times the diameter relates to the circumference, as the volume of the cube relates to that of the cylinder. And one sees thereof that an oblong also has the same ratio to an enclosed long cylinder, as also a square surface to the area of an enclosed circle, namely as 14 to 11 .

A cube to an enclosed sphere: The cube is as before ddd, and the enclosed sphere which is of the same diameter as the side of the cube $=\frac{d d c}{6}$.
The analogy is ddd $\because \frac{\text { ddc }}{6}$ and by means of multiplication and division this becomes $6 \mathrm{~d} \% \mathrm{c}$, that is 6 diameters is related to the periphery as a cube is related to an enclosed sphere, or in numbers as 21 to 11 , as before. This is the lowest even number that the volume or weight of a cube has to the volume or weight of an enclosed sphere, which touches all four sides of the cube with its surface. The same ratio is also found in an oblong volume or weight against that of an enclosed oval, as also if many globes or balls were to be stacked in a hexahedron (cube), and closely around them would be made a square-formed house, then the volume of the house to that of the balls together would be as $\frac{21}{11}$.

$$
\text { That is } 6 \text { d.c }:: \text { ddd. } \frac{\text { ddc }}{6}:: 21.11
$$

What is this about continued

 proportionality?6. I wish to know the proportion of a parabola, or the common characteristics of its ordinates, parameter, and axes. Its equation thereof is $p x=y y$ or $x=\frac{y y}{p}$. Thus if the analogy is set as $y \because y y / p$, it is found to be like $p \ddot{\%}$. That is p, y and x are in a continued geometric proportion.

$$
\begin{gathered}
x \ddot{\because y} \\
y \ddot{=p} \\
x . y:: y \cdot p
\end{gathered}
$$

In Swedenborg's book on algebra, Regelkonsten, which he wrote later in 1717, he shows six examples of how he uses his analogy method but with the simpler sign :: . Interestingly enough he writes more about it:

You can as well in everything else put two expressions against each other to see how one relates the other. The reason for this is that if you multiply or divide two proportional expressions with the same then the proportion between the two new expressions is the same but expressed with smaller fractions. This is something that has been performed in Daedalus vol. V, and it is a new way to do which has not been used before, and it has its benefits here and there.

