A Domain Independent System Architecture for Sharing Experience

Kerstin Bach

Meike Reichle

Klaus-Dieter Althoff

University of Hildesheim
Institute of Computer Science
Intelligent Information Systems Lab
D-31141, Hildesheim, Germany
{bach|reichle|althoff} @iis.uni-hildesheim.de

Abstract

We propose SEASALT, an architecture based
on the CoMES approach on developing col-
laborative multi-expert-systems using case-based
reasoning and software agents technology.
SEASALT is built on a modular structure and
will allow implementing intelligent information
systems for different kinds of application scenar-
ios based on the architecture we are presenting.
Introducing SEASALT furthers knowledge in-
tensive services based on distributed knowledge
sources. In our approach we integrate “knowl-
edge work” in a community eliciting new infor-
mation. Hence, in SEASALT agents act along-
side with human beings on a community plat-
form proving and receiving information.

1 Introduction

The SEASALT (Sharing Experience using an Agent-based
System Architecture LayouT) project is intended as a long
term project that aims to develop a domain-independent
and versatile architecture for intelligent information sys-
tems and subsequently specify and develop its individual
components and finally implement it for different applica-
tion scenarios. Our work concerns the topics of knowledge
engineering and knowledge management by describing an
application independent architecture for intelligent infor-
mation systems aimed at distributed multi-expert environ-
ments. Its main contribution is in the field of collabora-
tive knowledge maintenance, knowledge acquisition from
natural language communication, and agent technology in
knowledge acquisition and maintenance. Our focus lies on
domains that come with a surrounding community or can
easily initiate an according community. This means that
the overall domain should have a certain social relevance
as well as it should be useful for the individual members
of the community. Examples for such domains will be pre-
sented in this paper in section 5.

Since the knowledge managed by our systems is held by
a community rather than by one or a few single experts we
will aim at designing the systems’ underlying architecture
to involve collecting the knowledge from the community
members and motivating them to provide their knowledge.
The system is assembling and transforming the communi-
ties’ knowledge into a well defined structure so it can easily
be maintained and queried.

As a model for our architecture we use the Collabora-
tive Multi-Expert-System (CoMES) approach as described
in [Althoff er al., 2007]. We have chosen the COMES ap-
proach since we consider it to be both, easily applicable to

different domains and also fitting in its focus on collabora-
tive multi-expert environments. (In our opinion a commu-
nity can be regarded as collaborating experts.) Our archi-
tecture has been developed in a bottom-up procedure by ap-
plying the CoMES approach to a first application scenario
to receive an architecture draft. The draft was then subse-
quently generalized by mapping the draft to other scenarios
and extending the architecture so it can also be applied to
the new scenario. The scenarios used to develop the archi-
tecture were taken from already existing research projects,
the criteria on which the scenarios are chosen match are de-
scribed in section 4.1, two of them are presented in section
5.

By modeling the according domain in a modularized
way we can easily split it in individual topics that can then
be maintained by individual case factories as described in
[Althoff et al., 2006]. This distributed approach allows us
to more easily incorporate information collected within our
community, since this information mostly does not provide
complete cases of the desired domain but rather partial in-
formation that has to be assembled and combined before it
can be used in a conventional information system. Model-
ing the system’s individual components as agents addition-
ally contributes to its flexibility and helps us to accommo-
date the complexities of community provided knowledge.

In this paper we will firstly present prior work that has
already been done in connection to advancing the CoMES
approach. Next we will further specify the CoMES ap-
proach by concretizing it and transforming it into a first
architecture layout and giving a detailed description of its
individual components. Then we will demonstrate the ar-
chitecture’s adequacy by applying it to different applica-
tion scenarios that have been developed within our research
group. Finally we will give an outlook on the further pro-
ceedings of our work.

2 Collaborative Multi-Expert-Systems

Collaborative Multi-Expert-Systems (CoMES, see [Althoff
et al., 2007]) denote a new research approach that is both,
a continuation of the well-known expert system approach
and a research direction based on the ideas of case factory
and knowledge-line [Althoff er al., 2006; 2005].

In the Knowledge-line concept we systematically ap-
ply the software product-line approach [van der Linden
et al., 2007] from software engineering to the knowledge
of knowledge-based systems. This enables the necessary
“knowledge level modularization” for building potential
variants in the sense of software product-lines. The mod-
ularization can be achieved by making use of multi-agent
systems [Burkhard, 2003; WeiB, 1999] as a basic approach

for knowledge-based systems. An intelligent agent — as a
first approximation — is implemented as a case-based rea-
soning (CBR) system [Althoff, 2001], which, besides case-
specific knowledge, can also include other kinds of knowl-
edge. Each CBR agent is embedded in a case factory that
is responsible for all necessary knowledge processes like
knowledge inflow, knowledge outflow as well as knowl-
edge analysis.

A Case Factory (CF) is an organizational unit that em-
ulates the well-known experience factory approach [Basili
et al., 1994] from software engineering. Each role within
an experience factory motivates the introduction of one or
more software agents for carrying out automatable (sub-
)tasks more and more independently. Like the CBR agents,
the associated respective CF agents are intended to learn
from experience. For example, they could implement ma-
chine learning techniques for analyzing, evaluating, and
maintaining the case base of the CBR system agent. Usu-
ally each software agent has a human coach, namely the
one being responsible for the role (in the sense of the expe-
rience factory approach), jointly taking over the respective
assigned tasks. The human coach provides case-specific
knowledge for the case base of the assigned CF agent(s) as
well as feedback to suggested decisions. The coach’s mo-
tivation for providing knowledge is to make the CF agents
as competent as possible to transfer more and more routine
tasks to these CF agents. Of course, overall responsibility
and control remain with the human decision maker.

While many early (and also some current) expert systems
had the problem of acquiring and maintaining their knowl-
edge, the underlying idea in CoMES is to “develop COMES
where knowledge is produced”: for example in knowledge
communities already available in the World Wide Web.
CoMESs do not necessarily try to integrate knowledge
from different sources/experts but based on many experts.
As a consequence, they do not have the immediate goal to
formally represent the whole knowledge necessary to solve
problems associated with a given task. Instead the idea is
to learn step by step based on prior experiences or case-
specific knowledge provided by cooperative authors. An-
other idea is to keep the resulting learning scenarios/tasks
as simple as possible, thus having more agents and having
each one learning in a rather simple way. In this context we
are thinking of computer science techniques focusing on
experience like case-based reasoning, experience manage-
ment, case factory, machine and human learning, cognitive
architectures, etc.

3 Prior Work

In this section we present prior work which supports real-
izing SEASALT. We will introduce techniques and explain
how they can be applied to further the implementation of
SEASALT. The approaches described in this section will
be specific and concentrate on a single facet.

3.1 Domain Modeling for Unstructured Texts

In SEASALT we aim to process contributions given in web
communities to model the provided knowledge. Since we
do not know what kind of data can be expected, we have
to deal with unstructured texts of different domains. We
decided to use Textual Case-Based Reasoning (TCBR) to
capture the given information and formalize it [Lenz et al.,
1998]. Before a TCBR-System can be set up, a domain
model has to be defined to ensure that the data on which

the system is based can be accessed. Hence, analyzing un-
structured texts requires a domain model containing terms
to represent texts. The terms contained in a vocabulary
have to be both, domain specific and domain independent
[Roth-Berghofer, 2003]. Since we do not know what kind
of text (topic, used terms, etc.) is used in the contribu-
tions we have to create a vocabulary repository containing
both types of terms. When dealing with large databases
containing unstructured texts, building a domain model is
a very time-consuming task. [Bach, 2007b] describes how
domain modeling for TCBR can be realized for a case base
containing more than 9.500 cases with 2.2 million words.
The paper describes how heterogeneous repositories are
merged to build a vocabulary repository of general and do-
main specific terms to facilitate the detection of unknown
words. Therefore vocabulary repositories based on Ger-
maNet' and Web Services provided by Projekt Deutscher
Wortschatz? were used.

Since we expect SEASALT dealing with a large amount
of unstructured texts we will need a semi-automatic support
for searching and modeling new terms as well. In [Bach
and Hanft, 2007] the Textual Coverage Rate (TCR) is intro-
duced, which is a method to determine the IE coverage of
unstructured texts using a given vocabulary. This empow-
ers a knowledge engineer to decide which parts of the cor-
pus should be modeled first and how much should be done
to achieve a certain quality of modeling which means cov-
erage of unstructured text through IEs. Another feature of a
vocabulary repository is the provision of synonyms which
allow connections to find similar words. In SEASALT
we receive information of a World Wide Web commu-
nity and we expect dealing with misspelling/mistyping of
terms. Resolving misspelled words we will have to create
a misspelling repository in order to recognize and suggest
corrections. Misspelled words and their corrections will
be stored during the modeling process and during semi-
automated processes analyzing unknown texts, former cor-
rections can be used to suggest the correct word to the
knowledge engineer. In automated processing the vocab-
ulary is used to find correctly spelled words and continue
using them.

Although the domain modeling for unstructured text is
only one part to formalize unknown unstructured texts
(semi-)automatically, it will help us to gather information
of the community. We still miss the definition of connec-
tions between terms beyond synonyms to find similar doc-
uments.

3.2 Combination of Distributed Information

Prior work on the combination of distributed information
on a complex domain, such as Free/Libre Open Source
Software (FLOSS) has been done in [Reichle, 2007].
Here information about FLOSS applications is gathered
from different sources such as public FLOSS directories,
GNU/Linux distributions, collaboratively maintained soft-
ware tags and bug tracking systems. [Reichle, 2007] de-
scribes how to combine and unify these different informa-
tion sources and transform them into a general model for
FLOSS, that contains not only the most relevant informa-
tion on a FLOSS application but also weights the different
attributes and provides individually adapted similarity mea-
sures, so the model can be used to set up a CBR system’s

! http://www.sfs.uni-tuebingen.de/lsd/

2 http://wortschatz.uni-leipzig.de/Webservices/

case base.

While this work already offers useful insights on how to
combine different information sources in this rather com-
plex domain, it lacks the flexibility that the SEASALT ar-
chitecture provides. In the approach presented there, all in-
formation is merged by different scripts and parsers before-
hand and then inserted into a database and subsequently im-
ported into the case base of an empolis e:IAS system. This
way the combination of the different information sources
is already predefined and can not be adapted to for ex-
ample different kinds of questions or information needs.
Also such a huge, monolithic case base is harder to main-
tain, especially if automatic case base maintenance is to
be used [Roth-Berghofer, 2003]. An architecture like this
makes it harder to automatically insert new information.
This is especially true if this information does not come
in complete case descriptions but is collected from a real
live community and thus maybe fragmented or incomplete.
The SEASALT approach of storing information in a mod-
ularized way can make use of this work’s findings but also
extend them to suit a more flexible system architecture.

4 The Architecture of SEASALT

4.1 Individual Architecture Units

This section describes each unit of the SEASALT architec-
ture. The descriptions follow the logical order starting with
a given task which is processed using the architecture.

The architecture can be vertically split in two parts as can
be seen in figure 4.1. On the left hand side the knowledge
provision and on the right hand side the knowledge acqui-
sition. First we will focus on the knowledge provision and
explain how a question to the system will be processed. A
user enters a question using the Interface which passes the
question on to the Coordination Agent. The Coordination
Agent analyzes the question, looks up the matching Topic
Agent(s) and sends its requests to them. A response based
on the existing case base is created by each Topic Agent
and passed back to the Coordination Agent. Finally, the
response of the Topic Agents is used by the Coordination
Agent to compile an answer.

To exemplify this, imagine the Knowledge Line as a cab-
inet with the Coordination Agent as its chancellor or pres-
ident. Each member of the cabinet is concerned with a dif-
ferent department and has a large staff, that provides them
with information, updates it and make simple decisions in
the name of their respective cabinet member. In our ar-
chitecture the members of the cabinet would be the Topic
Agents, their staff would be each Topic Agent’s individual
Case Factory.

The knowledge acquisition process is illustrated on the
right hand side of our architecture diagram. It consists of
two parts: a platform that supports the community and of-
fers communication services where community members
can discuss and exchange experiences and a knowledge en-
gineering part in which contributions are analyzed and pro-
cessed. Based on the Topic Agents we will place Collectors
belonging to a Topic Agent in the community to collect in-
formation. Since the information given in the community
is not structured, a Knowledge Engineer has to support the
Collector’s work. The Knowledge Engineer will receive
and formalize contributions that the Collectors classify to
be useful for their individual topic. In the beginning this has
to be a human being, but the Knowledge Engineer trains an
Apprentice agent by providing it with a document set, con-
sisting of the source contribution and the structured docu-

ment. Thus the Apprentice will soon be able to do at least
basic pre-processing for the Knowledge Engineer. The for-
malized contribution is passed on to the Case Factory to
include the new cases and make them available to the sys-
tem. The original contributions that are provided with the
new cases can be used by the system to support its answers.
Additionally the community platform which is used by the
Collectors to collect information also offers agents for in-
telligent services that make the platform more usable, ease
the communication and accelerate conclusions on topics.

It is necessary that the information provision and the
community platform are presented and perceived as a sin-
gle entity. Thereby the platform’s intelligent services can
be an additional motivation for the community members
to not only passively let the system collect information,
but to directly provide it with complete cases or feedback
on the knowledge it already has collected. This is espe-
cially important, since it may be assumed that the system’s
knowledge provision component itself will mainly be used
by those community members that have less knowledge on
the domain, while those who are experts on the domain and
have much knowledge about it (the community’s regulars
or core group) will use it less often. Those regulars how-
ever will make more use of the community platform and
thus they will also more appreciate its intelligent services
and be more motivated by them to actively provide the sys-
tem with their knowledge.

Application Scenario

The motivation of users joining and working in the com-
munity is crucial for a successful application of SEASALT.
Therefore, application scenarios in which an intelligent in-
formation system using our architecture is implemented
should fulfill the following two conditions:

e Socially relevant, the topic should be relevant enough
to ensure a community which addresses enough peo-
ple who can join and share their knowledge.

e Individually useful, so each member of the commu-
nity can ask their own questions and receives satisfy-
ing answers and is thus motivated to further contribute
to the system’s knowledge base.

Defining the scenario’s tasks and domains should focus
on both conditions to create a good running community.

The application scenario’s knowledge domain should fit
the following characteristics:

e Suitable for community maintenance: all information
contained is accessible to everybody,

e Modular structure of knowledge to facilitate assign-
ment to Topic Agents,

e Well-defined range of topics with typical questions.

Interface

The communication between the user and the knowledge
providing components is enabled using a Human Com-
puter Interface (HCI), for example, containing forms or text
boxes. The Interface can be either a website or a client ap-
plication which passes the question on to the Coordination
Agent. The Interface depends on the structure of the do-
main data and supports the structuring of questions ensur-
ing the Coordination Agent can handle them. After pro-
cessing the question the Interface will be used to display
the answer.

Cuestion Handler

NP

Coordination Agent

e

Interface

Knowledge
Map

Question

— /Kno'Meclge Line
/

Coordination Agent

7N

Topic 4 ﬁ

Topic 1

P> \

|-,l- Maintainer

Topic 3

Topic 2

-+ Redundancy
Remowver

o ——
(==

Feedback

A

Topic
Key
Words
)
4+ Conflict Resolver

Case Factory

Knowledge Provision

Apprentice
Agent

| Intelligent Interface ‘

Knowledge Engineer

Knowledge Acquisition

Figure 1: The SEASALT architecture

Knowledge Line

A knowledge domain that has the above mentioned char-
acteristics allows building numerous Topic Agents that can
be coordinated by one Coordination Agent. A clearly de-
fined area of expertise for each Topic Agent is needed. Fol-
lowing a modular structure enables realizing a distributed
multi-expert-system.

The Knowledge line consists of several Topic Agents
whereas each agent is responsible for one individual topic.
Each Topic Agent is implemented as a CBR system, has
an own Case Factory to manage its knowledge, and is
equipped with a list of topic key words to communicate
its area of expertise to the Collector agent.

Coordination Agent

The Coordination Agent receives the user’s questions
from the Interface and communicates to individual Topic
Agents. It possesses a Question Handler to distinguish the

type of question and select a Request Strategy according to
the question. Request Strategies indicate in what order to
query individual Topic Agents and how to combine their
results for creating a human readable answer. Furthermore
the Coordination Agent has a Knowledge Map indicating
which Topic Agent is competent on which topic and how
to contact it. To generate the human readable answer, tem-
plates are provided which will be filled with the combined
responses of the contacted Topic Agents.

Case Factory

The individual Topic Agents’ case bases are maintained by
several Case Factory Agents which serve different tasks
such as inserting new cases, removing redundancies, re-
solving conflicts, improving the case base’s overall perfor-
mance, maintaining the topic keywords list, etc. Addition-
ally each Topic Agent has a collector agent that is equipped
with the keyword list and tries to identify relevant contri-

butions or contributions on the community platform which
are delivered to the Knowledge Engineer. Each contribu-
tion passed on to the Knowledge Engineer is analyzed and
the Knowledge Engineer will give a feedback about its ac-
tual relevance to the Collector so the agent can improve its
collection strategy.

Furthermore, each Topic Agent has a case base log
where every Case Factory Agent notes all actions per-
formed on the Topic Agent’s case base and why they were
carried out, ensuring all decisions and actions can be re-
traced.

Collector

One Collector agent per Topic Agent is placed in the com-
munity. The Collectors’ task is to collect community con-
tributions that are relevant to their respective Topic Agent’s
area of expertise. Their choices are based on the respec-
tive Topic Agent’s key word list. The contributions iden-
tified as relevant are passed on to the Knowledge Engi-
neer. The Collectors then receive feedback on their choices
from the Knowledge Engineer, thus improving their perfor-
mance over time.

Knowledge Engineer

The role of the Knowledge Engineer connects the Case
Factories and the Community enabling the exchange of
knowledge between both of them. The Knowledge En-
gineer is an expert on the system’s tasks and also takes
part in the Community. He receives contributions col-
lected on the community platform by the different Collec-
tor agents and gives each Collector agent a feedback on its
decisions. Furthermore the Knowledge Engineer formal-
izes relevant contributions, so the according Case Factory
Agent can insert the new cases into its Topic Agent’s case
base. The formalization is supported by an intelligent in-
terface that offers features like controlled vocabulary, spell
checks, synonyms, etc. as it is presented in [Bach, 2007b;
Bach and Hanft, 2007].

The Knowledge Engineer is supported by an Apprentice
agent. To train the Apprentice the Knowledge Engineer
uses relevant contributions and their formalizations (docu-
ment sets). In return the Apprentice is able to do at least
basic pre-processing and can take more and more work off
the Knowledge Engineer as its training continues.

Since these are only roles, the tasks of the Knowledge
Engineer can of course also be executed by more than one
person as well as the Apprentice can be more than one
agent.

Apprentice

The Apprentice is an agent or numerous agents, that is
trained with document sets by the Knowledge Engineer.
We aim to automate as many tasks as possible. The Ap-
prentice is at least able to do preparatory pre-processing
and is meant to take more and more work off the Knowl-
edge Engineer.

Community

The Community consists of a group of people who dis-
cuss several topics of a common domain. A communica-
tion Platform is used to discuss and exchange opinions. It
is extended with several Collector agents, that collect rele-
vant contributions on their topics. The people participating
in the community will be able to use the given system.

Platform

The Platform is used by the Community to discuss and ex-
change opinions and by the Collector agents to collect rel-
evant contributions. It offers agents of its own that perform
intelligent services for the platform’s users such as:

e . This has been discussed before” — Pointing out to
users if similar discussions have been had before

e ,.X might be able to help you on this” — Learning
which user is interested in or an expert on a certain
topic. (Interested users start threads on topic, experts
answer in threads on topic.)

e ,,What does X think about that?” — Selecting all con-
tributions by a specific person according to a specified
topic

e ,What the system knows” — Can tell what data the
knowledge-based system has on a specific topic

An example for such intelligent services is presented in
[Feng et al., 2006].

5 Practical Applications of the SEASALT
Architecture

After introducing the architecture we will now describe
two application scenarios which will be implemented using
SEASALT. Both application scenarios should substantiate
the architecture and clarify the usage of the COMES ap-
proach. Further their implementation and testing will serve
as a first evaluation and help to improve the architecture
and detect flaws in the concept.

5.1 docQuery - An Intelligent Information
System on Travel Medicine’

Nowadays it has never been easier to travel to different
places, experience new cultures and get to know new peo-
ple. In preparation for a healthy journey it is important
to acquire high quality of reliable information about travel
medicine prevention. Travel medicine is specialized on
medical issues like diseases, vaccinations, etc. which might
occur before, during and after a journey.

Currently the World Wide Web offers many websites,
discussion forums and services where a traveler can gather
information. Usually those websites do not contain all
medical information a traveler might need and the edi-
tors are mostly unknown. Furthermore the information
is spread over hundreds of websites and it is challenging
and time-consuming to find appropriate information [Bach,
2007al.

Together with a team of certified doctors of medicine
with a strong background of travel related medicine, we
will use SEASALT to implement docQuery, an applica-
tion to provide travel information based on travelers’ key
data such as travel period, destination, age(s) of traveler(s),
activities, etc. [Bach, 2007al. We aim at establishing a
community of experts exchanging knowledge on their ex-
pertise and getting new information from their colleagues.
docQuery will be supervised by experts and integrate the
experiences of travelers using the given advices to improve
the quality and early identify new issues.

Implementing docQuery using SEASALT will help
both, creating a community to exchange knowledge and of-
fering an multi-expert-system on travel medicine tasks. In

3 This is a project in cooperation with Thomas Schmidt
(mediScon worldwide).

the travel medicine domain various topics like medications,
countries, diseases, etc. can be distinguished and will each
be found in an individual Topic Agent.

5.2 FLOSSWALD - Information System on Free
and Open Source Software

Free/Libre and open source software (FLOSS) has pro-
duced a large and diverse range of software which of-
fers numerous and high quality alternatives to almost
all commercial software applications. Popular FLOSS
like Firefox*, Thunderbird®, OpenOffice.org®, vic’ or the
GNU/Linux operating system are steadily gaining users
both in the private and commercial sector.

However the FLOSS community is a complex social and
technical network that consists of tens of thousands of in-
dividual groups and projects that produce software in all
degrees of quality. Research [Reichle, 2007] shows, exist-
ing FLOSS directories are mostly used by expert users and
FLOSS insiders, while less experienced users prefer gen-
eral search engine and the advice of friends when choosing
software. The success of choosing software in this way
is limited though. A general web search for software for
a specific purpose will most likely yield the most popular
software (or rather that with the most popular website) but
not necessarily the one that is best suited for the given pur-
pose and user. Asking friends or colleagues for software
advice is also of only limited use, since those usually have
the same level of knowledge as the seeking person and can
thus not offer qualified advice.

The FLOSSWALD System [Reichle and Hanft, 2006;
Hanft and Reichle, 2007] aims to be an intelligent informa-
tion system on free/libre open source software (FLOSS),
that offers the community’s knowledge and experiences
with different software to unexperienced users and can be
queried using natural language and simple menus. To use
the system, the user does not have to be an expert on soft-
ware or computers in general. In order to achieve this
the system combines information collected from different
FLOSS directories by the FLOSSmole Project [Howison
et al., 2006] with data provided by GNU/Linux distribu-
tions (in this case the Debian Project’s Package data). This
knowledge can be enriched using the DebTags, a collec-
tion of collaboratively maintained tags covering different
aspects of software [Zini, 2005]. Additionally more user-
friendly attributes such as tasks that a software can be used
for “vague attributes” like user friendliness, flexibility or
stability that can be learned from the community. The com-
bination of these different knowledge sources and the prob-
lem of keeping them up-to-date provides an adequate appli-
cation scenario for the SEASALT architecture.

5.3 Implementation Details

Both application scenarios, along with others, will base on
SEASALT and use basically the same technologies. Raw
data will be contained in a DBMS like PostgreSQL® and
the Case Factory will be realized using e:IAS.

e:IAS is an information and knowledge management
suite developed by empolis®, a subsidiary of Bertelsmann

* http://www.mozilla-europe.org/en/products/firefox/

5 http://www.mozilla-europe.org/products/thunderbird/
® http://www.openoffice.org/

7 http://www.videolan.org/vlc/

8 http://www.postgresql.org/

® http://www.empolis.com

Arvato [empolis GmbH, 2005]. e:IAS consists of several
different components for information and knowledge pro-
cessing and management. Among these there is a rule en-
gine, which can be used to model business processes and
classification tasks (via rules). Hence, it contains a text
miner that can be used for analyzing documents as well as
it offers free text user queries, which can further be com-
bined with a downstream pattern matching component.

e:IAS also includes a powerful CBR engine and the so
called creator module, which is based on the free IDE
eclipse!®. The creator is used to model the cases for the
CBR engine. A case is modeled as an aggregate of at-
tributes. The creator is used to model the required at-
tributes, their domains and also underlying concepts and
taxonomies and the respective attributes’ similarity func-
tions. The model is stored using RDF respectively OWL,
all further information is stored in an XML format. The
case models in e:IAS can be filled with imported data from
a multitude of sources. The data import and their fur-
ther processing is done using a modular pipeline system in
which the different functionalities can be freely combined
using individual pipelets. Pipelets offer for example the im-
port from simple text files, documents, databases or web-
sites using an integrated crawler, and their subsequent pro-
cessing such as breaking the input data into single values
and assigning them to their respective attributes, analyzing
texts with a text miner or spell checker or stripping input
of html or xml elements. Once the data are imported and
processed the system’s knowledge base is ready and can be
used by the e:IAS knowledge server. Pipelines are how-
ever not only used for importing data, but also for integrat-
ing the aforementioned functionalities and making them
available to the Knowledge Server. e:IAS offers pipelets
for text mining, the creation and application of rule sets,
searching, automated classification and the generation of
dialogs. Additionally the Knowledge Server is able to use
external knowledge sources such as already existing dic-
tionaries. Different types of clients including simple web
clients but also rich clients or JavaBean applications can be
used to access the Knowledge Server. Communication be-
tween the server and its clients can be implemented using
various languages such as XML, COM or RMI.

6 Conclusion and Future Work

6.1 Conclusion

In this paper we have presented an architecture that follows
the CoMES approach and connects case-based reasoning,
software agent technologies and the acquisition of knowl-
edge distributed in a community.

We also described the collaboration of different experts
as well as the integration of software agents in a (given)
community. To further knowledge exchange we extend
common community platform features with several intelli-
gent services executed by software agents. Alongside in-
tegrating knowledge work in a community, we have de-
scribed how to use the elicited knowledge in an intelligent
information system. Developing our architecture we fol-
low a modular approach by creating Topic Agents for each
specific topic and combining them to create more complex
answers. Hence we specified each unit of SEASALT and
assigned tasks they have to perform. To evaluate our archi-
tecture we presented two application scenarios which can
be implemented using SEASALT.

19 http://www.eclipse.org/

6.2 Scientific Contribution

In this work we focused on knowledge engineering and
knowledge management by describing an application in-
dependent architecture for intelligent information systems
aimed at distributed multi-expert environments. Agent
technology is applied in the case factory agents, the col-
lector agent, and the apprentice agent. The work of the
knowledge engineer and its apprentice agent concerns the
field of knowledge acquisition from natural language com-
munication. Collaborative knowledge maintenance is real-
ized in the implementation of the topic agents, case factory,
and collector agent.

Our approach is characterized by our focus on com-
munities and the modular structure of knowledge as rep-
resented in our topic agents which also distinguishes the
SEALSALT architecture from general search engines and
more monolithic approaches. Furthermore the architecture
is more topic and community oriented. The use of case-
based reasoning allows for easy maintenance of the knowl-
edge base and powerful retrieval.

6.3 Future Work

Future work will go into the detailed specification and im-
plementation of the described units of SEASALT to realize
CoMES. We will first have to define general functions and
units which have to be provided for any application, then
implement those units and in a final step adapt them to the
different application scenarios like FLOSSWALD and doc-
Query. As mentioned before, the Case Factory will be im-
plemented using e:IAS representing one Topic Agent. The
communication between agents will be realized using RMI
which is already provided for e:IAS. Also the communi-
cation and tasks of the Coordination Agent have to be de-
fined and implemented. We have also created the role of
a Knowledge Engineer which trains the Apprentice Agent.
To support the Knowledge Engineer by pre-processing the
communities’ documents we will use TCBR, but in ad-
vance we have to clarify which tasks a Knowledge Engi-
neer has to fulfill and how agents can support it and adapt to
those tasks. We will also have to undertake further research
into issues arising from collaborative knowledge mainte-
nance such as contradicting experiences, alternate solutions
or incomplete data.

To ensure successful community work, community
members have to be motivated to share their experiences
and use the platform. In exchange platform services such
as specific platform agents should ease communication.
Hence, questions should be answered correctly so users
can trust in it. Existing communities have to be introduced
to our approach and the platform features need to be dis-
cussed.

References

[Althoff e al., 2005] Klaus-Dieter Althoff, Jens Miinz,
and Markus Nick. Integrating Case-Based Reasoning
and Experience Factory: Case Studies and Implica-
tions. In Uli Furbach, editor, Proceedings of the 28th
German Conference on Artificial Intelligence Workshop
on Knowledge Engineering and Software Engineering,
pages 1-12, Koblenz, Germany, 11. - 14. September
2005. Springer, LNATI 3698.

[Althoff et al., 2006] Klaus-Dieter Althoff, Alexandre
Hanft, and Martin Schaaf. Case Factory — Maintaining
Experience to Learn. In Mehmet H. Goker, Thomas
Roth-Berghofer, and H. Altay Giivenir, editors, Proc.
8th European Conference on Case-Based Reasoning
(ECCBR’06), Ollideniz/Fethiye, Turkey, volume 4106
of Lecture Notes in Computer Science, pages 429-442,
Berlin, Heidelberg, Paris, 2006. Springer Verlag.

[Althoff et al., 2007] Klaus-Dieter Althoff, Kerstin Bach,
Jan-Oliver Deutsch, Alexandre Hanft, Jens Mainz,
Thomas Miiller, Regis Newo, Meike Reichle, Martin
Schaaf, and Karl-Heinz Weis. Collaborative Multi-
Expert-Systems — Realizing Knowlegde-Product-Lines
with Case Factories and Distributed Learning Systems.
Technical report, University of Osnabriick, Osnabriick,
September 2007.

[Althoff, 2001] Klaus-Dieter Althoff. Case-Based Rea-
soning. In S.K. Chang, editor, Handbook on Software
Engineering and Knowledge Engineering. Vol.1, World
Scientific, pages 549-587. 2001.

[Bach and Hanft, 2007] Kerstin Bach and Alexandre
Hanft. Domain Modeling in TCBR Systems: How to
Understand a New Application Domain. In David C.
Wilson and Deepak Khemani, editors, Proceedings
of the 7th International Conference on Case-Based
Reasoning (ICCBR) 2007, Workshop on Knowledge
Discovery and Similarity, pages 95-103, Belfast,
Northern Ireland, 2007.

[Bach, 2007a] Kerstin Bach. docQuery — Reisemedizinis-
ches Informationssystem. Internal project report, 2007.

[Bach, 2007b] Kerstin Bach. Dominenmodellierung im
Textuellen Fallbasierten SchlieBen. Master’s thesis, In-
stitute of Computer Science, University of Hildesheim,
2007.

[Basili er al., 1994] Victor R. Basili, Gianluigi Caldiera,
and H. Dieter Rombach. Experience Factory. In John J.
Marciniak, editor, Encyclopedia of Software Engineer-
ing, vol 1, pages 469-476. John Wiley & Sons, 1994.

[Burkhard, 2003] Hans-Dieter Burkhard. Software-
Agenten. In Giinther Gorz, Claus-Rainer Rollinger, and
Josef Schneeberger, editors, Handbuch der Kiinstlichen
Intelligenz, 4. Auflage, pages 943-1020. Oldenbourg,
2003.

[empolis GmbH, 2005] empolis GmbH. Technisches
White Paper e:Information Access Suite. Technical re-
port, empolis GmbH, September 2005.

[Feng et al., 2006] Donghui Feng, Erin Shaw, Jihie Kim,
and Eduard Hovy. An intelligent discussion-bot for an-
swering student queries in threaded discussions. In IUI
’06: Proceedings of the 11th international conference on
Intelligent user interfaces, pages 171-177, New York,
NY, USA, 2006. ACM Press.

[Hanft and Reichle, 2007] Alexandre Hanft and Meike
Reichle. The FLOSSWALD Information System on
Free and Open Source Software. In Norbert Gronau,
editor, Proceedings of the 4th Conference on Profes-
sional Knowledge Management - Experiences and Vi-
sions, pages 135-142, Berlin, March 2007. Gito Verlag.

[Howison et al., 2006] James Howison, Megan S. Con-
klin, and Kevin Crowston. FLOSSmole: A collaborative
repository for FLOSS research data and analyses. In-
ternational Journal of Information Technology and Web
Engineering, 1(3):pages 17-26, Juli - September 2006.

[Lenz et al., 1998] Mario Lenz, André Hiibner, and Mir-
jam Kunze. Textual CBR. In Mario Lenz, Brigitte
Bartsch-Sporl, Hans-Dieter Burkhard, and Stefan Wess,
editors, Case-Based Reasoning Technology — From
Foundations to Applications, Lecture Notes in Artifi-
cial Intelligence, LNAI 1400, pages 115-137. Springer-
Verlag, Berlin, 1998.

[Reichle and Hanft, 2006] Meike Reichle and Alexandre
Hanft. The FLOSSWALD Information System on Free
and Open Source Software. In Martin Schaaf and
Klaus-Dieter Althoff, editors, Lernen - Wissensentdeck-
ung - Adaptivitdt Proceedings of the LWA 2006, FGWM
2006 Workshop on Knowledge and Experience Man-
agement, volume 1/2006 of Hildesheimer Informatik-
Berichte, pages 229-233. University of Hildesheim, Ok-
tober 2006.

[Reichle, 2007] Meike Reichle. Entwicklung und Imple-
mentierung eines Modells zum Retrieval von Free/Libre
Open Source Software unter Verwendung eines Case-

Based Reasoning Systems. Master Thesis (Magisterar-
beit), 2007.

[Roth-Berghofer, 2003] Thomas Roth-Berghofer. Knowl-
edge Maintenance of Case-Based Reasoning Systems —
The SIAM Methodology, Dissertation. PhD thesis, Uni-
versitiat Kaiserslautern, 2003.

[van der Linden et al., 2007] Frank van der Linden, Klaus
Schmid, and Eelco Rommes. Software Product Lines
in Action - The Best Industrial Practice in Product Line
Engineering. Springer, Berlin, Heidelberg, Paris, 2007.

[WeiB, 1999] Gerhard WeiB, editor. Multiagent Systems. A
Modern Approach to Distributed Artificial Intelligence.
The MIT Press, 1999.

[Zini, 2005] Enrico Zini. A cute introduction to Debtags.
In Alexander Schmehl, editor, Proceedings of the 5th
annual Debian Conference, pages 59—74, Helsinki, Fin-
land, 10. - 17. Juli 2005. The Debian Project.

