
MINLP Based Retrieval of Generalized Cases

Alexander Tartakovski1, Martin Schaaf2, Rainer Maximini1, and Ralph
Bergmann1

1 University of Trier,
Department of Business Information Systems II

54286 Trier, Germany
{tartakov|rmaximini|bergmann}@wi2.uni-trier.de

2 University of Hildesheim,
Institute for Mathematics and Applied Computer Science,

Data and Knowledge Management Group,
31113 Hildesheim, Germany

schaaf@dwm.uni-hildesheim.de

Abstract. The concept of generalized cases has been proven useful when
searching for configurable and flexible products like reusable components
in the area of electronic design automation. This paper addresses the sim-
ilarity assessment and retrieval problem for case bases consisting of tra-
ditional and generalized cases. While approaches presented earlier were
restricted to continuous domains, this paper addresses generalized cases
defined over mixed, continuous and discrete, domains. It extends the view
on the similarity assessment as a nonlinear optimization problem (NLP)
towards a mixed integer nonlinear optimization problem (MINLP), which
is an actual research topic in mathematical optimization. This is an im-
portant step because most real world applications require mixed domains
for the case description. Furthermore, we introduce two optimization-
based retrieval methods that operate on a previously created index struc-
ture, which restricts the retrieval response time significantly.

Keywords: generalized cases, mixed integer nonlinear programming, kd-
trees

1 Introduction

The smallest experience item in Case-Based Reasoning (CBR) is called a case.
When applying the structural CBR approach, each case is described by a finite
and structured set of attribute-value pairs that characterize the problem and the
solution. Hence, a single case can be considered as a point in the space defined
by the Cartesian product of the problem space P and solution space S. Newer
applications of CBR motivated a new concept called generalized cases [1], [2]. In
contrast to a traditional case, a generalized case does not cover only a point of
the case space but a whole subspace. This allows the representation of complex
and configurable products, for instance, reusable electronic design components,
in a very natural and efficient way. Generalized cases provide a set of solutions to

a set of closely related problems and can be viewed as an implicit representation
of a (possibly infinite) set of traditional point cases.
The concept of generalized cases implies the extension of similarity measures as
well. In [2] the similarity between a query and a generalized case has been defined
as the similarity between the query and the most similar point-case contained
in the generalized case.
Previous work, e.g. [3], focuses on generalized cases defined over continuous at-
tribute domains by considering the similarity assessment problem as a kind of
Nonlinear Programm (NLP), which is well known in mathematical optimization.
In contrast to these approaches, the work presented here addresses the similarity
assessment and retrieval problem for generalized cases defined over mixed, dis-
crete and continuous, attribute domains, which are typical for most real world
applications.
The concepts presented here were developed in the context of the project IPQ:
IP Qualification for Efficient Design Reuse3 founded by the German Ministry of
Education and Research (BMBF), which aims at the improvement of electronic
design processes by reusing already existing design components called Intellec-
tual Properties (IPs) [4]. Nowadays, IPs are offered by specialized vendors via the
Internet. For such large IP assets, we developed a CBR-based retrieval solution
[5]. Physically, IPs are descriptions that can be later synthesized to hardware.
They are usually configurable to some degree, e.g. IPs with flexible bus width
or frequency, and recommend themselves to be represented as generalized cases.
In section 2 we introduce an optimization-based approach to solve the similar-
ity assessment problem. In section 3 we present two index-based approaches to
improve the retrieval for generalized cases and point cases defined over mixed,
continuous and discrete, domains.

2 Optimization Based Similarity Assessment

In this section we characterize a relationship between the similarity assessment
problem for generalized cases and the optimization problem in mathematics.
Furthermore, we describe how to solve the similarity assessment problem for
generalized cases defined over continuous domains. Afterwards, we present a
new approach to solve the similarity assessment problem for generalized cases
defined over mixed domains.

2.1 Similarity Assessment as Optimization Problem

For the retrieval of generalized cases, the similarity between a problem and a
generalized case must be determined. A natural way is to extend a traditional

3 IPQ Project(12/2000-11/2003). Partners: AMD, Frauenhofer Institute for Integrated
Circuits, FZI Karlsruhe, Infineon Technologies, Siemens, Sciworx, Empolis, Thomson
Multi Media, TU Chemniz, University of Hildesheim, University of Kaiserslautern,
and University of Padeborn. See www.ip-qualifikation.de

similarity measure as follows [6]:

sim∗(q,GC) := max{sim(q, c)|c ∈ GC} (1)

According to this definition, the value of the extended similarity function
sim∗(q,GC) is equal to the similarity sim(q, c) between a query q and the most
similar point case c contained in the generalized case GC.
Due to the fact that the similarity assessment problem can be viewed as a specific
optimization problem, we describe the relationship between both problems as in
[6]. An optimization problem is the maximization or minimization of some objec-
tive function, often under restrictions given through equalities and inequalities.
In general, optimization problems are defined as follows:

max
x

f(x)

s.t. x ∈ F
(2)

with f an objective function and F a set of feasible solutions (feasible set), im-
plicit defined through constraints.
By defining an objective function f(x) := sim(q, x) and the feasible set F := GC
we transform a similarity assessment problem to a specific optimization problem.
In mathematical optimization several classes of optimization problems are known.
They differ in computational complexity, problem solution methods and problem
formulation. Therefore, it is important to find out the class and formulation of
an optimization problem by deriving it from a similarity assessment problem.
These classes and formulations differ for generalized cases defined over continu-
ous domains and for generalized cases defined over mixed domains. This will be
further elaborated in the following two sections.

2.2 Similarity Assessment for Continuous Domains

Generalized cases defined over continuous domains are restricted to connected
sets in the case space spanned by continuous attributes. A single generalized case
can be represented through equality and inequality constraints. The general form
is:

GC = {x ∈ Rn|c1(x) ≥ 0 ∧ . . . ∧ ck(x) ≥ 0
∧ck+1(x) = 0 ∧ . . . ∧ cl(x) = 0} (3)

The constraint functions ci are not restricted to be linear, they can also be non-
linear.
For refining the similarity assessment as an optimization problem, we regard
a similarity function sim. Although the aggregation function is commonly a
weighted average, which is a linear function, the local similarities are mostly
nonlinear. Consequently, the global similarity function sim is nonlinear as well.
Nonlinearity of the similarity function together with the nonlinearity of the gen-
eralized cases determine the class of optimization problems we are going to de-
rive. It is a nonlinear optimization problem (NLP) [7] having a general form as
follows:

max
x

f(x)

s.t. c1(x) ≥ 0,
· · ·
ck(x) ≥ 0,
ck+1(x) = 0,
· · ·
cl(x) = 0,
x ∈ Rn

(4)

This optimization problem has a nonlinear objective function and nonlinear con-
straints. By replacing the objective function f with sim(q, x) (with constant q),
we receive the desired representation of the similarity assessment problem as
optimization problem. The constraint set can be taken directly from the speci-
fication of the generalized case itself.

2.3 Similarity Assessment for Mixed Domains

For mixed domains, the formulation of an optimization problem is much more
complex. The most difficult issue is handling discrete attributes. In this section
we explain mixed integer nonlinear optimization problem (MINLP) and present
a formulation of similarity assessment as MINLP problem.

Example from the IPQ Project For illustrating the concepts presented in
this paper, we will use an example from the design of electronic circuits (see
above). The discrete cosine transformation IP (DCT IP) is a frequently reused
design component because it implements an algorithm widely used for MPEG-2
encoders/decoders. The parameters of this IP are clock frequency, chip area,
bus width, and subword size. There are dependencies between these parameters
defining the feasible design space. For simplification and without loss of gener-
ality, we can restrict the description of DCT IPs to the attributes shown in the
following table:

Table 1. Selected parameters of the example IP.

parameter description

frequency f The clock frequency that can be applied to the IP. (continuous)
area a The chip area the synthesized IP will fit on. (continuous)
width w Number of bits per input/output word. Determines the accuracy of the

DCT. Allowed values are 6, 7, ..., 16. (discrete)
subword s Number of bits calculated per clock tick. Changing this design space

parameter may have a positive influence on one quality of the design
while having a negative impact on another. Allowed values are 1, 2, 4,
8 and no-pipe. (discrete)

The dependencies between the parameters follow:

f ≤





−0.66w + 115 if s = 1
−1.94w + 118 if s = 2
−1.74w + 88 if s = 4
−0.96w + 54 if s = 8
−2.76w + 57 if s = no− pipe

(5)

a ≥





1081w2 + 2885w + 10064 if s = 1
692w2 + 2436w + 4367 if s = 2
532w2 + 1676w + 2794 if s = 4
416w2 + 1594w + 2413 if s = 8
194w2 + 2076w + 278 if s = no− pipe

(6)

This IP can be viewed as a single generalized case with parameterized attributes
f, a, w, and s.

Mixed Integer Nonlinear Optimization Problem The formulation of the
assessment problem for generalized cases defined over mixed discrete and contin-
uous domain is beyond the scope of NLP. The reason is a combinatorial character
of the assessment problem which is not covered through an NLP. Therefore we
need to use a generalization of NLP called mixed integer nonlinear program
(MINLP) [8], which covers nonlinear and integer programming. A general for-
mulation of this problem follows:

min
x,y

f(x, y)

s.t. c1(x, y) ≥ 0,
· · ·
ck(x, y) ≥ 0,
ck+1(x, y) = 0,
· · ·
cl(x, y) = 0,
x ∈ Rm, y ∈ Zn

(7)

The main difference to NLP is that for the objective function f and the con-
straints a continuous part x and an integer part y is distinguished.
MINLP is harder than NLP since it has, additionally, a combinatorial character.
The handling of this problem is one of the actual research topics in mathemati-
cal optimization [9]. However, since few years there are several industrial solvers
available handling MINLPs.

Similarity Assessment for Generalized Cases with mixed integer and
continuous domains as MINLP Now we are going to explain a formulation

of MINLP for the example of the DCT-IP. In general, the formulation consists
of two parts: from modelling of a feasible set and from modelling of the objective
function. We start with the first one.
Since a feasible set of MINLP is defined through equalities and inequalities the
following dependencies must be transformed:

f ≤ −0.66w + 115 if s = 1
f ≤ −1.94w + 118 if s = 2

...
(8)

We define in place of the variable s with a domain T (s) = {1, 2, 4, 8, no− pipe}
|T (s)| new variables:

s1, s2, s4, s8, sno−pipe ∈ Z
and a set of constraints:

s1 ≥ 0, s1 ≤ 1, s2 ≥ 0, s2 ≤ 1, . . . (9)

Each new variable represents a single attribute value of the variable s. So, if some
new variable sv = 1 it implies that s = v and contrary if s = v then sv = 1.
Since the variable s can have only one value at a given time, a new additional
constraint should be defined:

s1 + s2 + s4 + s8 + sno−pipe = 1 (10)

Every valid assignment of variables s1...sno−pipe implies a single value for the
variable s and every assignment of variable s implies a valid assignment of vari-
ables s1...sno−pipe. Example:

s = 4 ⇔




s1

s2

s4

s8

sno−pipe




=




0
0
1
0
0




(11)

Now, it is simple to formulate the dependencies (8) as inequalities:

s1(−0.66w + 115− f) ≥ 0
s2(−1.94w + 118− f) ≥ 0

...
(12)

For s1 = 1 the first inequality is ”switched on” and the other inequalities are
”switched off”, since s2 = s4 = s8 = 0.
The feasible set of MINLP is given through the set of constraints (12), (9), (10)
and additional constraints depending on the attribute a (chip area):

s1(−0.66w + 115− f) ≥ 0
s2(−1.94w + 118− f) ≥ 0
...
s1(−1081w2 − 2885w − 10064 + a) ≥ 0
s2(−692w2 − 2436w − 4367 + a) ≥ 0
...
s1 ≥ 0
−s1 ≥ −1
s2 ≥ 0
−s2 ≥ −1
...
s1 + s2 + s4 + s8 + sno−pipe = 1
w ≥ 6
w ≤ 16

(13)

f, a ∈ R and w, s1, s2, s4, s8, sno−pipe ∈ Z

We proceed with the objective function f . Because of the introduction of new
binary variables the formulation of the function f becomes more complex. To
define the objective function we first define the similarity function given by local
similarities and an aggregation function Φ:

sim(q, c) := Φ(simf (qf , cf), simw(qw, cw), sima(qa, ca), sims(qs, cs))

Consequently, the objective function can be defined as follows:

fq(f, w, a, s1, . . . , sno−pipe) := Φ

(
simf (qf , f), simw(qw, w),

sima(qa, a),
(
s1sims(qs, 1) + s2sims(qs, 2) + s4sims(qs, 4)

+s8sims(qs, 8) + sno−pipesims(qs, no− pipe)
))

(14)

The idea, here, is based on the following fact:

sims(qs, cs) =
(
s1sims(qs, 1) + s2sims(qs, 2) + s4sims(qs, 4)

+s8sims(qs, 8) + sno−pipesims(qs, no− pipe)
)

Revisiting the example (11) again and assuming that s1 = 0, s2 = 0, s4 = 1, s8 =
0 and sno−pipe = 0 is part of some valid assignment according to the constraint
set (13):

(
s1sims(qs, 1) + s2sims(qs, 2) + s4sims(qs, 4)

+s8sims(qs, 8) + sno−pipesims(qs, no− pipe)
)

=
(
0sims(qs, 1) + 0sims(qs, 2) + 1sims(qs, 4)

+0sims(qs, 8) + 0sims(qs, no− pipe)
)

= sims(qs, 4)

The objective function (14) together with the feasible set (13) define the MINLP,
its solution provides the similarity between the query q and the example gener-
alized case.
Normally, MINLP problems are not solved exactly but approximately.
There are several commercial solver on the market for MINLP problems, e.g.
GAMS/Baron [9], Xpress-SLP, and MINLP.

3 Retrieval

Because of the high calculation complexity of the assessment problem for gen-
eralized cases it is very important to develop index-based retrieval approaches.
The overall strategy is to build an index structure in advance, which is later
used for improving the response time of the retrieval. The step when building
the index structure will be denoted as offline phase, the retrieval step as online
phase. Hence, most of the calculation complexity is shifted from the online to the
offline phase. For building and integrating index structures, we developed two
new methods, a similarity based method presented in section 3.1 and a kd-tree
based method, which will be introduced in section 3.2.

3.1 Similarity Based Retrieval Method

Because of the high complexity of the assessment problem for generalized cases
we developed a retrieval method that is based on a fix similarity measure for
building an index structure.
A main step of this approach, is a partition of a problem space P into some sim-
ple subspaces. An example of a such simple subspace is a hyperrectangle that
has faces parallel to the coordinate planes. Queries are points of exactly one of
the subspaces, but it is unknown which one and where exactly.
Furthermore, we define for a subspace Sub and a generalized case GC two sim-
ilarity bounds:

Similaritymin(Sub,GC) := (15)
min

s∈Sub
sim∗(s, GC) = min

s∈Sub
max
g∈GC

sim(s, g)

and

Similaritymax(Sub, GC) := (16)
max
s∈Sub

sim∗(s, GC) = max
s∈Sub

max
g∈GC

sim(s, g)

gc2

q'

q'’

Par

gc1

gc3
 gc4

gc5

A1

A2

Fig. 1. Similarity bounds

Consider the subspace Sub and the generalize case gc5 in figure 1. The query
q′ belonging to the subspace Sub has a lowest similarity to generalized case gc5
from all queries of this subspace. Exactly this similarity value is provided by the
function Similaritymin(Sub, gc5). The query q′′ belonging to the subspace Sub
has a highest similarity to generalized case gc5 from all queries of this subspace.
This similarity value is provided by the function Similaritymax(Sub, gc57). If
these bounds are known and some query is inside the subspace Sub in the online
phase we can guarantee that its similarity to the generalized case gc5 lies within
the bounds Similaritymin(Sub, gc5) and Similaritymax(Sub, gc5).
Based on this fact, a retrieval approach can be simply constructed. The first idea
is to calculate, in the offline phase, similarity bounds for all subspaces and all
generalized cases. Furthermore, it is necessary to derive a partial order on gen-
eralized cases in terms of similarity for every single subspace and all generalized
cases. The partial order is defined as follows:

∧
gc1,gc2∈CB,

Sub∈P

gc1 < gc2 ⇔ Similaritymax(Sub, gc1) < Similaritymin(Sub, gc2)

Figure 2 illustrates the calculated similarity bounds for a single subspace and
the generalized cases gc1 to gc5. Furthermore, Figure 2 shows the resulting par-
tial order. For every query of the online phase, we only need to check to which
subspace it belongs to. After this check we know immediately the partial order
and the similarity bounds for all generalized cases. When searching for the n
best nearest neighbours, we can exclude all cases having n or more successors
because it is guaranteed that at least n cases are more similar. Finally we have
to perform linear retrieval on the rest of the cases.

sim

0

1

gen. cases
1
 2
 3
 4
 5

1

2
 3

5

4

Fig. 2. Similarity intervals and partial order

This method can be significantly improved if we bound the size of the retrieval
set before building the index structure. The customer is normally interested in at
most 10−20 cases in a retrieval set. Consequently, for a single subspace we have
only to remember all generalized cases with fewer predecessors than the desired
maximum size of the retrieval set. This improvement reduces significantly the
size of information, which should be saved with every single subspace. Therefore,
we can produce a much more detailed partition of the problem space and reduce
the online complexity. The reason for this significant improvement is the fact
that the cardinality-bound of a retrieval set is usually much lower than the size
of the case base.
A further improvement can be achieved by using the technique of decision trees.
The problem space can be partitioned recursively by choosing attributes and
attribute values and building new subspaces with borders on the chosen values.
For every gained subspace similarity bounds to all generalized cases and a par-
tial order can be calculated. Based on this data the termination criterion can
be specified (e.g. size of non dropped cases, degree of deviation of partial order
from linear order and so forth). The main algorithm schema for building an in-
dex structure is as follows:

INPUT: Case Base CB, similarity measure sim,
maximum size of a retrieval set

OUTPUT: A Retrieval Tree

1. create a root node R,
assign a whole problem space P to it,
assign all general cases CB to it.

2. select a leaf L with assigned subspace Sub
and assigned subset SubCB ⊆ CB of cases,
STOP if termination criterion is valid.

3. select some attribute A of the subspace Sub.
4. determine a cutting point p on selected attribute A

Condition: there is some point t ∈ Sub
having attribute value tA = p.

5. create two constraints A ≤ p and A > p.
6. create two new leafs L1 and L2,

assign Sub1 = {t ∈ Sub|tA ≤ p} to L1

and Sub2 = {t ∈ Sub|tA > p} to L2.
7. calculate ∀GC ∈ SubCB:

Similaritymin(Sub1, GC),
Similaritymax(Sub1, GC),
Similaritymin(Sub2, GC),
Similaritymax(Sub2, GC).

8. based on the similarity bounds calculate the partial order
O1 and O2 on generalized cases with respect to
Sub1 and Sub2.

9. for Sub1: drop all cases having equal or more
successors as the maximum size of a retrieval set,
the rest of generalized cases becomes SubCB1,
for Sub2: drop all cases having equal or more
successors as the maximum size of a retrieval set,
the rest of generalized cases becomes SubCB2.

10. assign SubCB1, O1 to L1 and SubCB2, O2 to L2, delete the assignment
of SubCB to L.

11. set a node L as a predecessor of L1 and L2.
(L is no longer a leaf, now).

12. GOTO 2

The result of this algorithm is a tree with leaves having assigned significant cases
and partial orders on them.
For every query in the online phase the subspace where the query belongs to, can
be effectively determined. We have to start with a root node and then follow the
path of subspaces including the query. The rest is an execution of linear retrieval
of cases assigned to the leaf determined.

Computation of MAX/MAX and MIN/MAX-Problems In the descrip-
tion of this approach we didn’t discuss a computation of max/max and min/max
problems. Although solving max/max problems is quite simple, the min/max
problems are complex. We start with the simple case first.
Consider the definition of upper similarity bound (16), the max/max problem
was given as follows:

max
s∈Sub

max
g∈GC

sim(s, g) (17)

A subspace Sub and a generalized case GC are both located in the problem space
P , i.e. Sub ⊆ P and GC ⊆ P . Regard a space P ×P . Furthermore, imagine that

the subspace Sub is located in the first space of a Cartesian product and the
generalized case GC in the second space of a Cartesian product. The following
optimization problem in general form is then equivalent to the max/max prob-
lem (17):

max
x

sim((x1, . . . , xn), (xn+1, . . . , x2n))

s.t. (x1, . . . , xn) ∈ Sub,
(xn+1, . . . , x2n) ∈ GC,
x ∈ P2

(18)

The consequence is that the max/max problem can be formulated as a common
max problem in double dimensioned space.
Since the max/max problem can be formulated as NLP or MINLP, we mention
again that this kind of problems can be solved for the majority of cases only
approximately. In our approach we have chosen an upper approximation.
The treatment of the min/max problem is much more complex. We were not able
to find publications tackling this problem in general. Although there is some work
on handling special min/max problems (e.g. in [10]) these approaches are not
applicable here.
Our idea is not to solve this problem exactly but approximately by estimating a
lower bound of the objective function. By estimating upper bound for max/max
problem and lower bound for min/max problem the index structure stays con-
sistent, i.e. no cases are excluded that belong to exact retrieval set. Figure 3

sim

0

1

gen. cases
1
 2
 3
 4
 5

1

2
 3

5

4

X

X
 X
 X

Fig. 3. Relaxation of Similarity Bounds

shows the relaxed similarity bounds. The figure shows that some intervals that
didn’t overlap before are overlapping now. Consequently, the ordering between
the corresponding generalized cases is not valid anymore. Furthermore, this re-
laxation doesn’t lead to new ordering relationships, so no cases can be excluded,
that wouldn’t be excluded by exact calculation of bounds.
The simplest way to estimate a lower bound for min/max problem is to solve
min/min problem, since:

∀Sub, GC ⊆ P :
min

s∈Sub
min

g∈GC
sim(s, g) < min

s∈Sub
max
g∈GC

sim(s, g) (19)

The handling of the min/min problem is exactly the same as the handling of the
max/max problem. It can be formulated as a common min problem in double
dimensioned space.
The other possibility to estimate a lower bound for the min/max problem by a
known feasible point c in the generalized case is to calculate:

min
s∈Sub

sim(s, c) (20)

Also, here it holds:

∀Sub, GC ⊆ P, c ∈ GC :
min

s∈Sub
sim(s, c) < min

s∈Sub
max
g∈GC

sim(s, g) (21)

In both cases the min problem has to be approximated through the lower bound.

3.2 Kd-Tree Based Retrieval Method

Another method to reduce the computational complexity of the retrieval adopts
the idea of the kd-trees [11]. The key characteristic of this method is building
the index structure independent from the similarity measure.
The traditional kd-tree based retrieval consists of two major steps - building a
kd-tree in the offline phase and using this tree for searching during the online
phase. For the retrieval of generalized cases these parts will be adapted and ex-
tended.

Building a kd-tree The following algorithm [11] builds the kd-tree variant,
named inreca tree, for common case bases.
While there are no changes in the main flow of the algorithm necessary to create
kd-trees for case bases consisting of generalized cases, two methods have to be
extended. The first extension is made in the function Partition. This function
contains a test checking if a given case belongs to a given subspace. This check
is quite simple for point cases, but not for generalized cases.
A generalized case belongs to some subspace if and only if their intersection is

not empty. E.g. for generalized case GC represented through GC =
n⋃

i=1

gi with

gi closed connected sets it should be checked if there is some i ∈ [1, n] with
gi ∩ Subspace 6= ∅.
The feasibility problem, that is, finding a point in the intersection of finitely
many sets, is discussed in various areas of sciences. It is well researched and for
many cases efficient to solve. Therefore, the test in the function Partition should
be extended to solve a feasibility problem for the given generalized case and the
given subspace.

INPUT: Case Base CB

Output: An Inreca Tree

1. IF NOT Split?(CB) THEN RETURN MakeBucket(CB)

2. ELSE

3. Discriminator := SelectAttribute(CB)

4. IF OrderedValueRange(Discriminator) THEN

5. Value := SelectValue(CB, Discriminator)

6. RETURN MakeInternalOrderedNode(Discriminator, Value,

CreateTree (Partition<(Discriminator, V alue, CB)),
CreateTree (Partition>(Discriminator, V alue, CB)),
CreateTree (Partition=(Discriminator, V alue, CB)),
CreateTree (Partitionunknown(Discriminator, V alue, CB)))

7. ELSE

8. RETURN MakeInternalUnorderedNode(Discriminator,

CreateTree (Partition1(Discriminator, CB)),...,
CreateTree (Partitionm(Discriminator, CB)),
CreateTree (Partitionunknown(Discriminator, CB)))

9. ENDIF

10. ENDIF

The function split in the traditional algorithm interrupts the split process if a
current subspace includes fewer cases as a given limit. Since several generalized
cases can overlap, it’s not always possible to achieve the limit, therefore the split
process should be stopped if, after several attempts, no successful split occurs.

Searching Similar Generalized Cases Using a k-d Tree There are no
major changes necessary for the online phase. Since a case base contains gener-
alized and point cases, sim∗ should be calculated instead of sim in this part of
the method. The search algorithm, BOB and BWB tests remain the same.

4 Related Work and Summary

The idea of generalized cases is not new and has been already discussed in the
area of instance-based learning and in earlier works on CBR [12]. Although not
explicitly mentioned, some CBR-based applications adopt the idea of general-
izing cases and provide proprietary solutions, often restricted to the particular
application domain. For an overview, see [13]. The term generalized case has
been introduced in [1], which provides a formal and systematic view using con-
straints to express the dependencies between several attributes. Based in this, we
developed the first index based method for generalized cases defined over mixed,
continuous and discrete, domains [14]. The idea of this approach is to transform
generalized cases by sampling them into point cases and using fast traditional
retrieval engines.

In this paper we presented the formulation of the similarity assessment prob-
lem for generalized cases with mixed domains as a special optimization problem
MINLP. Because of the computational complexity, we introduced two optimi-
zation-based retrieval methods that operate on a previously created index struc-
ture. The first retrieval method takes the similarity measure into account, while
the second one is based on kd-trees. Both optimization techniques improve the
response time of CBR-based applications with generalized cases significantly.
However, generating the required index-structures can be time consuming but
this is done only once for static case bases.

References

1. Bergmann, R., Vollrath, I., Wahlmann, T.: Generalized cases and their application
to electronic design. In E. Melis (Hrsg.) 7th German Workshop on Case-Based
Reasoning (1999)

2. Bergmann, R.: Experience management. Springer-Verlag Berlin Heidelberg New
York (2002)

3. Mougouie, B., Bergmann, R.: Similarity assessment for generalized cases by opti-
mization methods. In S.Craw and A.Preece (Hrsg.) European Conference on Case-
Based Reasoning (ECCBR’02).Lecture Notes in Artificial Intelligence, Springer
(2002)

4. Lewis, J.: Intellectual property (ip) components. Artisan Components, Inc., web
page, http://www.artisan.com (1997, Accessed 28 Oct 1998)

5. Schaaf, M., Maximini, R., Bergmann, R., Tautz, C., Traphöner, R.: Supporting
electronic design reuse by integrating quality-criteria into cbr-based ip selection.
Proceedings 6th European Conference on Case Based Reasoning (September 2002)

6. Bergmann, R., Vollrath, I.: Generalized cases: Representation and steps towards
efficient similarity assessment. KI-99 (1999)

7. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear programming, theory and
algorithms. Wiley (1993)

8. Leyffer, S.: Deterministic methods for mixed integer nonlinear programming. PhD
Thesis, Department of Mathematics and Computer Science, University of Dundee
(1993)

9. Tawarmalani, M., Sahinidis, N.: Convexification and global optimization in con-
tinuous and mixed-integer nonlinear programming: Theory, algorithms, software,
and applications. Kluwer Academic Publishers, Boston MA (2002)

10. Horst, R., Tuy, H.: Global optimization: Deterministic approaches. 2nd rev. Edi-
tion, Springer, Berlin, Germany (1993)

11. Wess, S., Althoff, K.D., Derwand, G.: Using k-d trees to improve the retrieval step
in case-based reasoning. University of Kaiserslautern (1993)

12. Kolodner, J.L.: Retrieval and organizational strategies in conceptual memory. PhD
thesis, Yale University (1980)

13. Maximini, K., Maximini, R., Bergmann, R.: An investigation of generalized cases:
Theory, algorithms, software, and applications. Proceedings of 5th International
Conference on Case Base Reasoning (ICCBR’03), June 2003 in Trondheim, Norway.
Editors: Kevin D. Ashley, Derek G. Briddge (2003)

14. Maximini, R., Tartakovski, A., Bergmann, R.: Investigating different methods for
efficient retrieval of generalized cases. In Reimer U., Abecker A., Staab S., Stumme

G.(Hrsg). WM2003: Professionelles Wissensmanagement-Erfahrungen und Visio-
nen (2003)

