The FLOSSWALD Information System on Free
and Open Source Software

Alexandre Hanft Meike Reichle
Intelligent Information Systems Intelligent Information Systems
Lab, University of Hildesheim Lab, University of Hildesheim

alexandre.hanft @uni-hildesheim.de meike.reichle @uni-hildesheim.de

Abstract. We propose the implementation of an intelligent infor-
mation system on free and open source software. For a first proto-
type we model the knowledge base and the case format used for
case-based retrieval. Based on information from the Debian Project
package repository and open source software directories we intend
to investigate means of mapping the provided technical information
on vague attributes that are more intuitive to users who are
unexperienced in using open source software. Thereby, we intend to
build a system that will be able to give intelligent software recom-
mendations depending on more intuitive specifications provided by

the user.

1 Introduction

Free and open source software has produced a large and diverse range of
software which often offers numerous alternatives for the same task, such as
text editors, e-mail clients or web browsers. Also because of this existing
project descriptions are mostly technically phrased and focus on the
project’s technological features.

However, in order to choose from a range of available software especially
less experienced computer users mainly ask for qualitative attributes such as
usability, stability and an agreeable look. Already existing software direc-
tories also offer mainly technically oriented search possibilities. What’s
missing here is the link between the user’s qualitative expectations and the

technical attributes of a project.

We intend to learn translating these qualitative attributes into a set of
technical features. Our plan is to design and implement an information
system on free and open source software, FLOSSWALD, that offers
searches by technical as well as qualitative attributes. The system’s
knowledge base will consist of software descriptions, improved with tags
and user feedback on the results.

First, we illustrate our motivation to launch FLOSSWALD. Section 2
introduces the idea behind FLOSSWALD, including a first analysis of the
available data sources. Section 3 presents related work that we have
examined in the course of the project’s creation. This paper closes with a
conclusion and an outlook in section 4.

1.1 Motivation

The Free and Open Source Software Community is a complex social and
technical network that consists of thousands of individual groups and
projects that produce software

in all degrees of quality, from low class to very high grade. But most of it is

only known to its users, other insiders or those who know where and how to
look for it. While the popularity of free and open source software is rising, a
growing number of less-experienced computer users who have just recently
begun using some of the most popular free and open source software such
as the Firefox browser or the Thunderbird e-mail client are now considering
to exchange also other programs for a free and open source alternative.
These computer users usually only know very few isolated projects and
don’t know about the actual free and open software scene.

This rising interest in free and open source software also creates a new need
for information on free and open source software projects and their nature
and quality. However, knowledge about this topic is still very much
restricted to insiders who are themselves active in the Free and Open Source
Software Community. While simple technical questions such as “What

database does application XY use?” are sufficiently easy to answer using
e.g. web search machines, more vague questions such as “What is the right
e-mail client for me” or “Which GNU/Linux distribution should I put on my
small company’s webserver?” are a much harder task. Such questions don’t
only need technical information but also meta information such as how old
or established a project is, how many users or developers it has, how mature
its code base is, or how reliable it is to still be around in a few years.
Existing information services such as Freshmeat or Sourceforge rely heavily
on technical criteria and language and are thus of only small use to
inexperienced users. As a consequence, we plan to implement an intelligent
information system that meets this need by offering more intuitive search
criteria and intelligent search tools based on user preferences and learned
similarities between software or user groups.

2 The FLOSSWALD Project

First we introduce the project and describe the investigated data sources for
our knowledge base: Debian packages, DebTags, Debian changelogs, the
Debian bug tracking system and the FLOSSmole project The last part of
this section presents the planned implementation as an instantiation of a
more general framework for knowledge-based systems.

2.1 Concept

FLOSSWALD, the Free/Libre Open Source' SoftWare and AppLication
Directory, is a project proposal that aims to use a case-based reasoning
system that includes information about the individual softwares in its
knowledge base. We decided to us a case-based system, because we are
dealing with vague criteria and use a large collection of individual
information entities. The system is further equipped with several machine
learning components that are meant to improve system performance by
creating additional knowledge in the form of concepts, e.g. user groups or
similarities (such as “of a similar kind” or “do the same task’), from the
provided data.

2.2 The Knowledge Base

To build up the knowledge base we include data from the Debian
GNU/Linux package repository and the FLOSSMOLE project [Howison et
al. 2006] that provides raw data, mined at Freshmeat, Sourceforge,
ObjectWeb and Rubyforge. The Debian Project

Debian GNU/Linux is a free operating system developed by more than a
thousand volunteer developers and many more contributors such as package
maintainers, translators and documentation writers all over the world, who
collaborate mainly via the Internet. It has, due to its age and popularity,
probably the largest selection of prepackaged free and open source software
of all GNU/Linux distributions. Its upcoming release will includel7,583
binary packages’ and 10,228 source packages. And, what’s most important,
all of these packages come with a textual description, which

" In this paper we use the term “free/libre and open source software” in order to
include both, the Open Source and the Free Software community.

z http://packages.debian.org

Package: 3dchess

Priority: optional

Section: games

Installed-Size: 136

Maintainer: Debian QA Group <packages@qa.debian.org>
Architecture: 1386

Version: 0.8.1-12

Depends: libc6 (>= 2.3.6-6), libx11-6, libxext6, libxmus,
libxpmd, libxt6, xaw3dg (>= 1.5+E-1)

Filename: pool/main/3/3dchess/3dchess_0.8.1-12_i386.deb
Size: 33564

MDSsum: fecee217870b621286£75e528496d3b1

SHAL: 88343el9£566cf5cdllef099bad97fhabfde3led

SHA256: 3601709708044£7e489%a0a74dbedacaleddb2felbe
533655b268af36fb6abd2c

Description: 3D chess for X11

3 dimensional Chess game for XI11R6. There are three boards, stacked
vertically; 96 pieces of which most are the traditional chess pieces with
just a couple of additions; 26 possible directions in which to move. The AL
isn’t wonderful, but provides a challenging enough game to all but the most
highly skilled players

Tag: game::board::chess, interface::3d, use::gameplaying, x1l::application

already offers a great wealth of information about a certain software. The textual
description can be analyzed with different information retrieval tools, extracting
important terms or finding similar descriptions in other packages. The package’s
size, dependencies, section and priority can also provide conclusions on its
suitability for an existing system, its nature or purpose. Additionally to this, the
Debian package repository offers several other sources of information.

DebTags [Zini 2005] is a project started by Enrico Zini. Those tags are
shown alongside package descriptions where available and give meta
information on the software. The tags include numerous different ontologies
representing different “perspectives” such as what the software is used for,
what interfaces are used, what role the software has (server, client), its
programming language, used protocols and many others. DebTags are in a
machine readable format and thus allow for smarter search and navigation
interfaces than the original full text Debian package search.

Debian further collects detailed anonymised usage data on its packages.
Debian GNU/Linux users can voluntarily install a program called
popularity contest” (popcon) that sens anonymised reports to the Debian

? http://popcon.debian.org/

project indicating what packages are installed on a user’s system and when
they have been used the last time. These data allow a first take on e.g. the
popularity of a particular software.

Debian Changelogs and the bug tracking system’ can give information on
the up-to-dateness and stability of a package.

The FLOSSmole Project
The FLOSSmole (formerly OSSmole) project is a collaborative project.

[...] designed to gather, share and store comparable data on
and analyses of free and open source software development
for academic research. [Howison et al. 2006, S.1]

Additional analysis of the FLOSSMOLE data and the adequacy of these
data sources has been done in [Reichle and Hanft 2006].

The Case-Format

In order to allow a case-based retrieval we model a first prototype with
myCBR [myCBR], an open source plugin for the OWL Editor Protégé. In
order to include all available data, we combine our data sources, namely the
Debian package descriptions and the data mined by the flossmole project.
We remove unnecessary slots and map correspondent ones. This is
necessary, since some slots, such as a textual description of the project or
the software's main task are given by several sources and many projects are

3http://bugs.debian.org/

covered by different data sources. Additionally we introduce a project ID
for all software descriptions and do some normalisation, such as outsuorcing
frequent terms e.g. licenses.

Also, we decided to separate our case base in two different parts, one
holding general project information such as a project's description or
license, the other holding qualitative data such as a software's priority,
vitality or popularity. We do this because we consider these data to be
entirely different. The information provided in the first part (fig. 1) can be
considered to be universally valid while the data in the second part (fig. 2)
are subject to constant change and cannot be assumed correct under all
circumstances. Because of this we intend to only use the data from the first
part for retrieval while the data from the second part are at the moment only
used as additional information when displaying the according results and
possibly for ordering them. However, in the next development stage, when
we introduce vague attributes, these subjective data may prove useful. It
needs to be investigated, whether e.g. a high popularity may be taken as an
indication for any vague attributes e.g. "easy to use". An example for a case
format can be seen in fig. 1.

<?xml version="1.0" encoding="UTF-8"?> <Document>
<Instances_for_Class class="Project">

<Prototype>

<slotvalue slot="project_id" value="Integer" minval="1" />
<slotvalue slot="projectname_short" value="String" />
<slotvalue slot="license_id" value="integer" />

<slotvalue slot="url_project_page" value="String" />
<slotvalue slot="real url_homepage" value="String" />
<slotvalue slot="subscriptions" value="Integer" minval="0" />
<slotvalue slot="Section" value="Symbol" />

<slotvalue slot="Architecture" value="Symbol" />
<slotvalue slot="Source" value="String" />

<slotvalue slot="Depends" value="String" />

<slotvalue slot="Installed-Size" value="Integer" minval="0" />

<slotvalue slot="desc full" value="String" />

Figure 1: The package description of a Debian package

<Instances_for_Class class="Project_qualitative_data">
<Prototype>
<slotvalue slot="Priority" value="Symbol" />
<slotvalue slot="project_id" value="Integer" minval="1" />
<slotvalue slot="rating" value="Float" minval="0.0" />
<slotvalue slot="rating_count" value="Integer" minval="0" />
<slotvalue slot="rating_rank" value="Integer" minval="1" />
<slotvalue slot="vitality_score" value="Float" minval="0.0"
/>
<slotvalue slot="vitality_percent" value="Float" minval="0.0"
/>
<slotvalue slot="vitality_rank" value="Integer" minval="1" />
<slotvalue slot="popularity_percent" value="Float"
minval="0.0" />
<slotvalue slot="popularity_score" value="Float" />

Figure 2: The package description of a Debian package

2.3 Integration into a Knowledge-Based System

Due to the heterogeneity and the large amount of free and open source
software, it seems to be appropriate to use case-based reasoning to give the
user advice according to their vague descriptions and (soft) constraints. In
such a case-based reasoning system, each software project should be
represented by an individual case. Additionally, users should have the option
to tag already known software with freely chosen tags to enrich the software
descriptions with attributes that conform better with most users’ level of
abstraction than the mostly technical information we get from the afore
mentioned sources. To finally create the “link” between more formal project
descriptions and the vague descriptions from the users’ perspectives we plan
to use machine learning technology.

[Althoff et al. 2006] presented a framework for knowledge-based systems
(KBS) that appears to be promising for realising FLOSSWALD. The
integrationhas been sketched up more detailed in [Reichle and Hanft 2006].

3 Related work

Existing information systems on free and open source software include
Freshmeat, GNU Savannah, Berlios and Sourceforge. Many of these direc-
tories (e.g. Savannah, Berlios and Sourceforge) also offer development
infrastructure such as web space, mailing lists, version control systems, bug
tracking systems, or wikis. Those directories thus only include information
on projects they also host. This has led to a certain redundancy since many
projects registered with e.g. Sourceforge, so they are listed there but do not
use the provided infrastructure but their own. Other software directories
have been discussed in [Reichle and Hanft 2006].

Althoff et al. 1999 have created an information system that is designed as an
experience factory and holds information on CBR technology and tools.
This system is also based on a CBR system that can be queried and updated
over a web interface. This system gave the original idea for the
FLOSSWALD and we hope to be able to reuse some of the experiences
made in the development of this system.

4 Conclusion & Outlook

We are confident that FLOSSWALD will be of great use to computer users
new to free and open source software, who will most likely do vague
searches, based on similarities or ratings as well as to experienced users
who are searching with highly defined criteria such as required libraries or
avoiding particular technologies or protocols. After evaluating the data
provided by the Debian project and the FLOSSmole project and designing a
knowledge base and case structure to flexibly work with them, our next step
will be to implement a CBR system based on the knowledge-based systems
framework that is able to deal with the provided information and define the
particular components (such as the maintenance of the knowledge base)

where machine learning modules can be used to improve the system’s
performance.

5 References

[Althoff et al. 1999] Althoft, K.-D., Nick, M., Tautz, C. (1999). CBR-PEB:
An Application Implementing Reuse Concepts of the Experience
Factory for the Transfer of CBR System Know-How. In Proceedings of
the Seventh Workshop on Case-Based Reasoning during Expert
Systems *99 (XPS-99), Wuerzburg, Germany.

[Althoff et al. 2006] Althoff, K.-D., Hanft, A. & Schaaf, M. (2006). Case
Factory — Maintaining Experience to Learn. M. Guker & T. Roth-
Berghofer (eds.), Proc. 8th European Conference on Case-Based
Reasoning (ECCBR’06), LNCS 4106. Springer Verlag. pp 429-442.

[Howison et al 2006] Howison, J., Conklin, M., Crowston, K. (2006).
FLOSSmole: A Collaborative Repository for FLOSS Research Data
and Analyses. International Journal of Information Technology and
Web Engineering. 1(3). July-September, 2006. pp 17-26.

[myCBR] https://mycbr.opendfki.de, last visited on 22th of october 2006

[Newman et al 1998] Newman, D.J. & Hettich, S. & Blake, C.L. & Merz,
CJ. (1998). UCI Repository of machine learning databases at
http://www.ics.uci.edu/Unlearn/MLRepository.html. Irvine, CA:
University of California, Department of Information and Computer
Science. last visited: 07/25/2006

[Reichle and Hanft 2006] Reichle, M. & Hanft, A.. The FLOSSWALD
Information System on Free and Open Source Software. Workshop
FGWM 2006. In Schaaf, M. & Althoff, K.-D.(eds) Proceedings of the
LWA 2006. Hildesheimer Informatik-Berichte volume 1/2006,
University of Hildesheim

[TREC 2005] The Fourteenth Text REtrieval Conference (TREC 2005) in
Gaithersburg, Maryland, National Institute of Standards and

Technology (NIST), at http://trec.nist.gov/pubs/trec14/t14
proceedings.html. last visited: 07/25/2006

[Zini 2005] Zini, E. (2005). A cute introduction to Debtags at http://
debtags.alioth.debian.org/paper-debtags.html. Last visited: 07/25/2006

