
Understanding LSI via the
Truncated Term-term Matrix

Diplomarbeit

am Fachbereich Informatik an der Universität des

Saarlandes

von

Régis Newo Kenmogne

Mai 2005

Diese Arbeit wurde nach einem Thema von Dr. Holger Bast
am Max-Planck Institut für Informatik in Saarbrücken

angefertigt.

Abstract

In this thesis, we study the relation between Latent Semantic Indexing (LSI)
and the co-occurrence of terms in collections. LSI is a method for automatic
indexing and retrieval, which is based on the vector space model and which
represents the documents and computes the relevance scores in a reduced,
topic-related space. For our study, we view LSI as a document expansion
method, i.e. for a pair of terms, the occurrence of one of them in a document
increases or decreases the importance of the other term for the document,
depending on the respective entry in the expansion matrix. We study the
relation between the expansion matrix and the co-occurrence information of
the pairs of terms in collections. We find out that the entries of the expansion
matrix are influenced by the order of co-occurrence of the pairs of terms. We
then show that the retrieval performance of LSI for the optimal choice of
parameters can be obtained when the expansion matrix used is a simple
linear combination of the first and the second order co-occurrences.

Hiermit erkläre ich an Eides Statt, diese Diplomarbeit selbstständig ange-
fertigt, nur die angegebenen Quellen benutzt und sie noch keinem anderen
Prüfungsamt vorgelegt zu haben.

Saarbrücken, den 31. Mai 2005

Régis Newo

Acknowledgements

I would like to thank my supervisor Dr. Holger Bast for his guidance and
the many helpful suggestions.
I also thank Ingmar Weber and Debapriyo Majumdar for all the hints in all
the time of research for and writing of this thesis.

My special thanks go to my family for their support all the time.

Contents

Contents i

List of Figures iii

List of Tables v

1 Introduction 1
Contribution . 2

2 Preliminaries 5
2.1 Information Retrieval . 5
2.2 Vector Space Model . 6
2.3 Latent Semantic Indexing (LSI) 9

2.3.1 Singular Value Decomposition (SVD) 10
2.3.2 LSI in practice . 12

2.4 Term Similarities . 13

3 Using Term Co-occurrences 17
3.1 Representing the Term-term Matrix as a Graph 17
3.2 Some Properties of the (Truncated) Term-term Co-occurrence

Matrix . 19
3.3 Related Work . 24
3.4 Improvements and Experiments 26

3.4.1 Java program . 26
3.4.2 Results and Interpretation 27

3.5 Conclusion . 30

4 Approximating the Truncated Term-term Matrix 31
4.1 Idea . 31
4.2 Experiments . 32

4.2.1 Detecting a Relation between Tk and T (resp. T 2) . . . 33
4.2.2 Approximation of Tk 37

i

4.2.2.1 Approximation of Tk for κ = 0 37
4.2.2.2 Approximation for κ = 1 and κ = −1 38
4.2.2.3 Discussion . 38

4.2.3 Combining LSI (for κ = 0) with the basic vector space
model . 42
Discussion . 42

4.3 Conclusion . 45

5 Conclusion 47
Future Work . 48

Bibliography 49

List of Figures

2.1 Example of term-document matrix and the computation of the
similarity score with the vector space model 9

2.2 Truncated term-term matrix (k = 2 and κ = 0) of the term-
document matrix defined in Figure 2.1 15

3.1 Example of a term-term graph 18

4.1 Plots Tk-T for Med . 34
4.2 Plots Tk-T

2 for Med . 34
4.3 Plots Tk-T

2 for Med (κ = 1) with a restriction on the T -value 35
4.4 Plots Tk-T

2 (κ = 0) with a restriction on the T -value 36
4.5 Average precision with min (T 2, αT − βT 2) for different α and

β. 41
4.6 Average precision with αT + βT 2 for different α and β. 41
4.7 Behaviour of the average precision with I + αT + βT 2 (Med). 43
4.8 Comparison of the approximations of Tk for κ = 0 for Med . . 44
4.9 Comparison of the approximations of Tk for κ = 0 for Time . . 44
4.10 Comparison of the approximations of Tk for κ = 0 for Cran . . 45

iii

List of Tables

3.1 Average number of paths by Tk value for CRAN, k = 100
(from [17]) . 25

3.2 Average number of paths by Tk value for CRAN, k = 100 and
κ = 1 . 28

3.3 Average number of paths by Tk value for CRAN, k = 100 and
κ = 0 . 29

4.1 Best average precision with our collections for three variants
of LSI. 32

4.2 Average precisions of the approximations of the truncated
term-term matrices for all collections. 39

4.3 Average precisions of the approximations of the combination
of LSI and the vector space model 43

v

Chapter

1

Introduction

Most text retrieval methods use straightforward term matching (i.e. lexical
match). That is, a document is retrieved if and only if it contains one or
more words occurring in the user’s query. That leads to the fact that those
methods cannot handle two well-known phenomenons which are related to
the language usage: polysemy (e.g. surfing the web vs. surfing at a beach)
and synonymy (e.g. car vs. automobile). The retrieval method which is the
subject of this thesis, called Latent Semantic Indexing (LSI), tries to over-
come these problems. It was first presented in [10] and [7].

LSI tries to solve these problems by finding the latent structure in docu-
ments and queries, i.e., for a given number of topics, LSI finds which words
belong to each topic and also which topics each document treat of. For a
given query, the relevance score assigned to each document does not depend
on the words it contains, but on the topics handled in the document.
LSI is a so-called unsupervised method, that is, neither training nor explicit
input of knowledge is required. It has been shown that LSI has good retrieval
performance (see [10, 7]). LSI uses linear algebra techniques (e.g. singular
value decomposition), as explained in [5] and also in the next chapter.

1

2 Chapter 1. Introduction

Contribution

Even though LSI works well in practice (if properly tuned), it is still not
clear why LSI improves the retrieval performance [26]. Many papers address
this issue and try to find some explanations (as in [17, 15, 19, 26, 8]). We
also aim in this thesis to have a better understanding of the way LSI works.
As shown in [2] and also detailed in Section 2.4, LSI can be viewed as a
document expansion method. That is, the occurrence of a word in a docu-
ment increases or decreases the importance of another word or even leads to
the insertion of another word in the document, depending on the respective
entry in the expansion matrix. In this thesis, we thus focus on the expansion
matrix which is also called truncated term-term matrix (in Section 2.4, we
will justify this appellation).
In [17, 15, 19], the authors claim that there is a strong relation between the
entries of the expansion matrix and the word co-occurrence information for
each pair of terms (i.e. how often two words co-occur in a document or how
many terms exist which co-occur with both words of the pair and so on).
We thus want to find out, to what extent those entries depend on the order
of co-occurrences of the respective pairs of words. Our results show that
only the first (i.e. how often two words directly co-occur) and the second
(i.e. how many words directly co-occur with both words of a pair) order
of co-occurrence play an important role for LSI. We take the following two
approaches.

First, as already done in [17], we analyse the relation between the order
of co-occurrence of pairs of words in documents and LSI (i.e. the entries of
the truncated term-term matrix). We find some mistakes in the experiments
made by the authors of [17, 15, 19], which lead to the fact that some of their
conclusions about the relation between LSI and the co-occurrence of words
in documents are wrong. We then correct them and adjust the conclusions
they drew. This is the subject in Chapter 3.

In the second approach, we approximate the truncated term-term matrix
with other matrices, whose entries represent the first and the second order
of co-occurrence of the pairs of terms. We show that a simple combination
of those two orders of co-occurrence provides a retrieval performance com-
parable to that of LSI. Based on these approximations, we will also see that
the term co-occurrence information is at the heart of what makes LSI work.
We will see in Section 2.4 that the first order co-occurrence information for
a collection with m words and n documents is computed in O(x2.376) where
x = max(m, n), whereas LSI computes the optimal combination of the first

3

and second order co-occurrence in O(mk) where k is the chosen number of
topics and is most of the time much smaller than m and n. LSI thus com-
putes that information in a very efficient way, though it seems in some cases
to make some computations which do not improve (or even affect) the re-
trieval performance. We also approximate the combination of LSI and the
basic vector space model, which is well-known retrieval model that we detail
in Section 2.2, and we show that it has an even better retrieval performance
than the previous approximations. We will deal with this part in chapter 4.

In the next chapter, we will first present some preliminaries.

4 Chapter 1. Introduction

Chapter

2

Preliminaries

2.1 Information Retrieval

The amount of data stored in computers is growing every day. According to
a study [3], there were about 550 billion documents on the web (including
the deep web) in 2001. This data needs to be classified and retrieved (prefer-
ably fast) whenever needed. Information Retrieval is the part of computer
science concerned with retrieving, indexing and structuring documents (e.g.
text documents, images, videos) from collections (e.g. Web, corpora).
The retrieval method studied in this thesis is a text retrieval method, i.e.
it retrieves documents in collections made up of text documents containing
words, also called terms. The problem addressed here is also called the ad-
hoc retrieval problem ([23]), i.e. the user gives a query, which also consists
of terms, and the retrieval method tries to find the documents which fit the
query best.

Although different methods have been proposed for the text retrieval prob-
lem, most of the methods are based on three main models ([1]):

• the Boolean model,

• the probabilistic model and

• the vector space model.

5

6 Chapter 2. Preliminaries

In the Boolean model the documents are represented as sets of words and
the query consists of a Boolean combination of terms. Here, the frequency
of a term in a document is not important. The main disadvantage of this
model is that the retrieved documents are not ranked. That is, all returned
documents are supposed to have the same relevance, which most of the time
is not true and does not enable the user to concentrate on the documents
that the method consider as the most relevant.

The two other models solve these problems in that the documents are ranked
by relevance. There exist many methods for the ranked retrieval problem,
and there are many measures in order to compare their retrieval quality. The
two most important ones ([4]) are the following:

• Precision: it is a measure for the ability of a method to return only
relevant documents. It is defined as

precision =
relevant documents retrieved

documents retrieved
.

• Recall: it is a measure for the ability of a method to return all relevant
documents. It is defined as

recall =
relevant documents retrieved

relevant documents in the collection
.

Thus the higher the precision is, the more retrieved documents are relevant,
whereas a high recall indicates that almost all returned documents are rele-
vant.

In the probabilistic model, each document is supposed to be either relevant
or not for the query, depending on which terms the document contains. The
probability that a document is relevant is (approximately) computed and
the documents are ranked with respect to that probability. Bayes’ theorem
is frequently used to compute these probabilities ([1, 9, 14]).

The retrieval method studied in this thesis is based on the vector space
model which will be presented in detail in the next section.

2.2 Vector Space Model

The vector space model is widely used in Information Retrieval ([4, 23]).
Here, the documents and the query are represented by vectors. Each entry

2.2. Vector Space Model 7

of the vector corresponds to a term. Thus for a collection with a total num-
ber m of terms the vectors are m-dimensional.
The entries in a vector represent the importance or the weight of the terms
in the corresponding document or query. The easiest way to represent this
weight is to use the term frequencies in the documents. That is, each entry
in the vector indicates how often the corresponding term occurs in the docu-
ment or query.

Yet most of the time there are lots of terms which occur very often in many
documents. For example, in a collection containing all the articles by the
members of a computer science institute the word ‘computer’ is likely to oc-
cur in many articles. Whereas a term like ‘lsi’ is rare and more likely to be
specific to the document in which it occurs and should have a higher weight.
This problem can be solved by considering the global and local weights of a
term [5, 4]. This is why the so-called tf-idf formula is often used. It is based
on the following two assumptions:

• the weight of a term should increase with its number of occurrences in
the document and

• it should decrease with the number of documents in which it appears.

A possible weight of a term in a document proposed in [23] with the tf-idf
formula is

dij =

{
(1 + log tfij) · log n

dfi
if tfij ≥ 1

0 if tfij = 0

where tfij is the frequency of the term i in the document j, n is the total
number of documents and dfi the document frequency of the term i (i.e. the
number of documents in which term i occurs).

Another problem is that large documents contain many terms that are very
often repeated in these documents. This leads to the fact that their vec-
tors have higher entries for the corresponding terms. A smaller document,
in which the same terms might be as important as in a large one, will have
lower vector entries, which can lead to differences while computing the rele-
vance scores for a given query. This problem can be solved by normalising
the document vectors. That is, each entry dij of a document di is divided by
the length |di| of the document.

In order to get the relevance scores, the query is compared to each docu-
ment using a similarity measure which returns a value called the similarity
score. The list of scores obtained is then sorted and the documents with the

8 Chapter 2. Preliminaries

highest scores are the ones the method considers to be the most relevant.
The similarity measures generally return the documents which are geometri-
cally close to the query.
Let q be the query vector and let di be the vector representing the ith docu-
ment in the collection. The weight of the jth term is qj in the query and dij

in the document.
The most widely used similarity measures are:

• the scalar product (or also dot product), i.e.

sim(q, di) = qT · di =
m∑

j=1

qjdij .

Here, the largest similarity score is obtained when the document con-
tains all the words of the query.

• The cosine measure, i.e. the score computed is the cosine of the angle
between both vectors. Here we have

sim(q, di) =
qT · di

|q| · |di|
=

∑m
j=1 qjdij√∑m

j=1 q2
j ·
√∑m

j=1 d2
ij

,

and the largest similarity score is also obtained when the document
contains all the words of the query. This measure is equivalent to the
first one when the vectors are normalised.

The term-document matrix A is the matrix in which each column represents
a document. That is, A is defined as

A = [d1, d2, . . . , dn]

and is an m× n-matrix. Usually, we have m � n, because most of the time,
the documents in collections cover various topics, and each covered topic im-
plies many new terms which are specific to the topic.
When the similarity measure used is the dot product, the relevance scores for
each document with a query q can be obtained by a simple matrix product
qT ·A. The resulting n-dimensional vector holds the resulting scores for each
document.

In Figure 2.1 we have an example of a simple term-document matrix A
representing a collection with 5 documents. The query q just contains the
term ‘web’ and with the dot product similarity measure the first and third
documents are supposed to be the most relevant.

2.3. Latent Semantic Indexing (LSI) 9

A =

d1 d2 d3 d4 d5

internet 1 1 1 0 0
web 1 0 1 0 0
surfing 1 1 0 1 1
hawaii 0 0 0 1 0
beach 0 0 0 1 1

qT = (0 1 0 0 0)

qT · A = (1 0 1 0 0)

Figure 2.1: Example of term-document matrix and the computation of the
similarity score with the vector space model

Although the vector space model does not have the same disadvantages as
the Boolean model, it still has some drawbacks. In the vector space model,
the terms are assumed to be independent, as different terms are treated as
different dimensions. That is, the vector space model assumes that no rela-
tion exists between the terms (see [7]). In reality this is not the case. The
two main relations between terms are:

• synonymy : this means that many terms can be used to express the
same thing (e.g. car and automobile). This can lead to a very low
relevance score for some relevant documents just because they do not
contain exactly the same words which are in the query, but instead
synonyms (i.e. it has an impact on the recall).

• Polysemy : this means that a single term can be used to express many
things (e.g. surfing on the web and surfing at the beach). This can lead
to the fact that some irrelevant documents have high relevance scores
just because they share some words (polysems) with the query (i.e. it
has an impact on the precision).

The vector space model can to a certain extent deal with the polysemy prob-
lem, but not with the synonymy problem. In the example in Figure 2.1 the
document d2 becomes a very low relevance score because it does not con-
tain the term ‘web’ (but internet), although it is also relevant for our query.
The retrieval method which is the subject of this thesis is based on the vec-
tor space model and tries to overcome the problems mentioned above. It is
introduced in the next section.

2.3 Latent Semantic Indexing (LSI)

As we saw in the previous section, the basic vector space model represents
the documents and queries in a so-called term vector space (i.e. the entries

10 Chapter 2. Preliminaries

of the vectors correspond to the terms in the collection) and it assumes that
the terms are independent. Instead, LSI tries to represent the documents by
taking the relation which can exist between terms into account. LSI does so
by representing the query and documents by topics, instead of terms. For
a given number of topics (also called concepts), LSI represents the query
and the documents as vectors and each entry of the vectors correspond to
a topic. The goal is to reduce the noise caused by the synonymy and the
polysemy. By representing documents and queries with topics, similar words
(e.g., synonyms) are assigned to the same topic, and polysems are assigned to
various topics, according to their different meanings. LSI was first presented
in [10, 7].

Now we will show how LSI represents the documents with topics (i.e. how
the entries of the vectors, which are the weights of the topics for the docu-
ment, are computed). Let k be the number of topics we wish to have (with
k < n and k < m). We want to transform the m-dimensional vectors into
k-dimensional vectors. As most concept-based retrieval methods, LSI uses
a matrix decomposition for this aim. So we have to find an m × k matrix
T and a k × n matrix D such that the product of these two matrices is a
(rank-k) approximation A′ of the term-document matrix A. Each column of
T corresponds to a topic and its entries are the weights of the terms for that
topic, whereas each column of D is a document represented by topics and we
have

A ≈ A′ = T ·D .

LSI uses T to express the queries by topics.
In order to compute the rank-k approximation A′ and its decomposition, LSI
uses a dimensionality reduction technique called Singular Value Decomposi-
tion. The dimensions of the approximation are chosen in a way that they
represent the axes of greatest variation of the term-document matrix (see
[23]).

2.3.1 Singular Value Decomposition (SVD)

The Singular Value Decomposition (SVD) is used to solve many problems
(e.g. pseudo-inverse of matrices, data compression, noise filtering) and is a
least squares method. LSI uses it to find a low rank approximation of the
term-document matrix.
The SVD theorem states ([12]) that each m× n matrix can be written as a
product of three matrices, i.e.

A = U · Σ · V T ,

2.3. Latent Semantic Indexing (LSI) 11

where U is an m×m matrix whose columns are the (normalised) eigenvectors
of AAT , V is an n×n matrix whose columns are the (normalised) eigenvectors
of AT A, and Σ is an m×n diagonal matrix which contains the sorted singular
values1 σ1, . . . , σr on its diagonal. The columns of U (resp. V) are called the
left (resp. right) singular vectors and UT U = Im and V T V = In.
The number of nonzero singular values corresponds to the rank of A. The
proof of the existence and uniqueness of this decomposition can be found in
[12].
The fact that Σ is not necessarily a square matrix and that A may have some
singular values, which are zero, implies that many vectors in U and V will
be multiplied by 0. This is why the so called reduced SVD will be used most
of the time in this thesis. In this reduced SVD the term-document matrix is
decomposed as

Am×n = Um×rΣr×r(Vn×r)
T ,

where r is the rank of A, U (resp. V) is obtained by dropping the last
columns of U (resp. V) from the full SVD and Σ is the diagonal square
matrix with the nonzero singular values, i.e., Σ = diag(σ1, . . . , σr).
With this decomposition, we can have a low rank approximation of each
matrix, especially of the term-document matrix A. Knowing that A has
rank r, we can get a rank-k (with k < r) approximation of A by taking the
k singular vectors (and the corresponding singular values) of A from which
we have the most variations. That is,

A ≈ Ak = UkΣkV
T
k

where Uk is an m×k matrix which contains the first k columns of U , Vk is an
n× k matrix containing the first k columns of V and Σk is a k × k diagonal
matrix which contains the first k singular values.
As we mentioned earlier, SVD is a least-squares method. In fact, as shown
in [12], the Eckart-Young theorem states that Ak is the best rank-k approxi-
mation of A with respect to the Frobenius norm (2-norm for matrices).

Now, we have the decomposition and the low-rank approximation we need in
order to map document and query vectors from the term space into the topic
space. Uk is the so-called term-topic similarity matrix, i.e., the columns of
Uk represent the topics in the term space. And Vk is the so-called document-
topic similarity matrix, i.e., the columns of V T

k represent the documents in

1The singular values are the (positive) square roots of the eigenvalues of AAT or AT A.
Those eigenvalues are positive real numbers, because AAT is symmetric and positive def-
inite.

12 Chapter 2. Preliminaries

the topic space. Σk is often used to accentuate the entries of either Uk or Vk.

2.3.2 LSI in practice

The goal is to transform term vectors into topic vectors. This is done in LSI
by using a linear transformation L defined by:

L : Rm −→ Rk

x 7−→ Σκ
kU

T
k x

where κ ∈ R (but most of the time, we have κ ∈ {−1, 0, 1}).
For κ = −1 for example, the term-document matrix is mapped to:

A 7−→ Σ−1
k UT

k A

= Σ−1
k UT

k UΣV T

= Σ−1
k (Ik | 0)︸ ︷︷ ︸

k×r

ΣV T

= Σ−1
k (Σk | 0) V T

= (Ik | 0) V T

= V T
k

and the query q is mapped to Σ−1
k UT

k q. The relevance scores for each docu-
ment are computed in the same way as in Section 2.2.
Let us for example compute the relevance scores of the documents from the
example in Figure 2.1 with the query ‘web’. For k = 2 and κ = 0 (i.e.
q 7−→ UT

2 q and A 7−→ Σ2V
T
2) we have with the dot product similarity mea-

sure (
UT

2 q
)
·
(
Σ2V

T
2

)
= (0.86 0.53 0.76 − 0.14 − 0.05).

We see that the second document becomes a much higher relevance score
(than the fourth and the fifth document), although it does not contain the
term ‘web’.

The best choice for k varies according to the collections and is a difficult
task. While k should be small enough to remove much of the noise, it should
also be large enough to cover all the topics treated in the collection [5]. This
problem is the subject of an ongoing research [22].

2.4. Term Similarities 13

2.4 Term Similarities

As we saw earlier, LSI assigns terms to topics and topics to documents. This
assignment of terms to topics depends on the similarity between terms, i.e.
how often two terms co-occur.
The term-document matrix A for a collection with n documents and m terms
is an m×n matrix with each column of the matrix representing a document.
A can also be viewed as a matrix with each row representing a term vector,
i.e. a vector containing the weight of a term in each document. Thus,
similarities between terms (and also between documents) can be computed
[7]. A value representing the similarity tij between two terms i and j (with
i, j ∈ {1, . . . ,m}) is the dot product of the i-th (say ai) and the j-th row
(say aj) of the term-document matrix, i.e. tij = ai · aj. tij is nonzero if and
only if a document exists, in which both terms i and j occur.
Let T be the square matrix containing all those similarities. T is called the
term-term co-occurrence matrix and is defined as:

T = AAT

= UΣV T (UΣV T)T

= UΣ V T V︸ ︷︷ ︸
=Ir

ΣUT

= UΣ2UT
(

= (UΣ)(UΣ)T
)

T can be computed in O(x2.376) where x = max(m, n) with the fast matrix
multiplication algorithm by Don Coppersmith and S. Winograd.
Like the terms, documents can also be compared to each other by computing
the dot product of two columns. However, that won’t be required in this
thesis.

We noticed in the last section that LSI first transforms m-dimensional vec-
tors (documents and queries) into k-dimensional vectors before computing
the relevance scores. Let q′ be the transformed query q and A′ the trans-
formed term-document matrix A. We have:

q′ = Σκ
kU

T
k q and A′ = Σκ

kU
T
k A .

Let us see what happens when the relevance scores for the documents are
computed:

14 Chapter 2. Preliminaries

First, we have with the dot product:

q′
T
A′ = (Σκ

kU
T
k q)T Σκ

kU
T
k A

= qT UkΣ
2κ
k UT

k︸ ︷︷ ︸
=:Tk

A

= qT TkA
(

= (Tkq)
T A = qT (TkA)

)
(2.1)

As we can see in equation 2.1, Tk is a term expansion matrix for the queries as
well as for the documents. We also see that computing the relevance scores in
the m-dimensional space in combination with that term expansion matrix is
equivalent to first transforming the m-dimensional vectors into k-dimensional
ones and then computing the relevance scores in the k-dimensional space.
Second, when the cosine similarity measure is used, the relevance score for
each document is

q′T di
′

|q′| · |di
′|

=
(Σκ

kU
T
k q)T (Σκ

kU
T
k di)

|Σκ
kU

T
k q| · |Σκ

kU
T
k di|

=
qT UkΣ

2κ
k UT

k A

|Σκ
kU

T
k q| · |Σκ

kU
T
k di|

=
qT TkA

|Σκ
kU

T
k q| · |Σκ

kU
T
k di|

. (2.2)

When we take a look at the denominator of the right part of equation 2.2,
we can remark that |Σκ

kU
T
k q| is the same for each document and thus does

not influence the ranking for each query.
Furthermore, we have:

|Σκ
kU

T
k di|2 = (Σκ

kU
T
k di)

T (Σκ
kU

T
k di)

= dT
i UkΣ

κ
kΣ

κ
kU

T
k di

= dT
i UkΣ

κ
k UT

k Uk︸ ︷︷ ︸
=Ik

Σκ
kU

T
k di

= dT
i T ′

kT
′
kdi with T ′

k = UkΣ
κ
kU

T
k and T ′

k
2 = Tk

= |T ′
kdi|2 (2.3)

From equation 2.3, we gather that |Σκ
kU

T
k di| = |T ′

kdi|. The ranking computed
by LSI with the cosine similarity measure is the same as the one computed
with

q · Tkdi

|T ′
kdi|

for i ∈ {1, . . . , n}. (2.4)

For κ = 0, which is the most widely used variant of LSI, we have Tk = T ′
k =

UkU
T
k . That means, as shown in [2], that the ranking computed with the

2.4. Term Similarities 15

T2 =

internet web surfing hawaii beach
internet 0.55 0.42 0.20 -0.09 -0.14
web 0.42 0.34 0.10 -0.09 -0.15
surfing 0.20 0.10 0.58 0.21 0.38
hawaii -0.09 -0.09 0.21 0.13 0.23
beach -0.14 -0.15 0.38 0.23 0.40

Figure 2.2: Truncated term-term matrix (k = 2 and κ = 0) of the term-
document matrix defined in Figure 2.1

cosine similarity measure can be obtained with

q · Tkdi

|Tkdi|
for i ∈ {1, . . . , n}, (2.5)

which shows that the similarities in this case can also be computed in the
m-dimensional space in combination with a term expansion matrix (but only
for documents).

We see from the equations 2.4 and 2.5 that when the cosine similarity mea-
sure is used, Tk is used as a document expansion matrix. Tk is also called
truncated term-term matrix, because it is computed using the truncated term-
topic similarity Uk. Each entry in Tk is a measure for the similarity of two
terms in the concept space. When a vector is multiplied by that matrix,
the presence of a term in that vector effects the increase or decrease of the
weight of other terms in the vector, depending on the respective entry in Tk.
In figure 2.2, we see the truncated term-term matrix of the term-document
matrix define in Figure 2.1 for k = 2 and κ = 0. We remark from the matrix
that terms which belong to the same topic (e.g. internet and web) receive
(high) positive similarity value, whereas terms from different topics (e.g. web
and beach) have lower (even negative) similarity values.

Now we want to know how LSI works, i.e. how LSI detects the relation
which exists between two terms (and assigns the appropriate value in Tk).
Understanding the truncated term-term matrix and also the meaning of its
entries would help to understand how LSI works. We will see in the next
chapter that the term co-occurrence information is at the heart of what makes
LSI work.

16 Chapter 2. Preliminaries

Chapter

3

Using Term Co-occurrences

In the last chapter, we saw that LSI is a retrieval method which tries to solve
the problems caused by synonymy and polysemy. In this chapter, we will see
that LSI does so by using the term co-occurrence information. That is, how
often or in how many documents terms occur together with other terms and
so on.
For a better understanding of this, we will use a graph representation of the
term-term matrix.

3.1 Representing the Term-term Matrix as a

Graph

We also saw in the last chapter how two terms can be compared and how
the term-term co-occurrence matrix can be obtained. To represent an m×m
term-term matrix T as a graph, we need m nodes, where each node represents
a term. There exists an edge between two nodes i and j if and only if the
entry tij of T is nonzero. Knowing that an entry tij in the term-term matrix
is non-zero if and only if there exists a document in which both terms i and
j occur, we can then easily see from the graph whether two terms co-occur
or not.
The edges of the graph can also be weighted by the value of tij.

17

18 Chapter 3. Using Term Co-occurrences

d1 d2 d3

t1 1 1 0
t2 1 0 1
t3 0 1 0
t4 1 0 1

t1 t2 t3 t4
t1 2 1 1 1
t2 1 2 0 2
t3 1 0 1 0
t4 1 2 0 1

t 1

t

t

t3 4

2

(a) (b) (c)

Figure 3.1: Example of a term-term graph. (a) is the term-document matrix,
(b) is the term-term matrix coming from (a) and (c) if is then the term-term
graph coming from (b).

This graph is called the term-term graph. An example of a term-term graph
can be seen in figure 3.1.

For LSI, we are not only interested in terms which directly occur together
in documents, but also in the degree of term transitivity. That is, for two
terms i and j which may not co-occur, we also want to know if another term
k exists such that i and k co-occur and k and j co-occur and so on. In this
thesis, the degree of transitivity will also be called order of co-occurrence,
which can be defined using the term-term graph.

Definition 3.1 (Order of co-occurrence). The order co-occurrence of a
pair of terms i and j is the number of edges of the shortest path (in the
unweighted term-term graph) between node i and j in the term-term graph.

In figure 3.1 for example, the order of co-occurrence of t2 and t3 is 2, because
the shortest path between these nodes has 2 edges in the term-term graph.
In fact, we can see that t2 co-occurs with t3 in document d1, and t1 co-occurs
with t3 in d2 there is no document in which both terms occur. It justifies the
order of co-occurrence of that pair of terms.
The following definition is helpful in order to avoid confusions.

Definition 3.2 (nth degree path). An nth degree path between a pair of
terms i and j is a path with exactly n edges between i and j.

In figure 3.1 again, we can see that there is a third degree path between t2
and t3 through t4 and t1.

3.2. Some Properties of the (Truncated) Term-term
Co-occurrence Matrix 19

3.2 Some Properties of the (Truncated) Term-

term Co-occurrence Matrix

In this section, some mathematical background about the term-term co-
occurrence matrix will be presented.
We already know that T = AAT = UΣ2UT . With this formula, it is then
easy, using inductive proof and the fact that UT U = Ir, to show that for
each natural number n ≥ 1, we have

T n = UΣ2nUT .

Due to the fact that Σk is a diagonal matrix (i.e. Σk = diag(σ1, . . . , σk)), we
have for any real number x, Σx

k = diag(σx
1 , . . . , σx

k). Thus, the entry tij of T
is

tij =
r∑

z=1

uizujzσ
2
z ,

and the entry t
(n)
ij of T n is

t
(n)
ij =

r∑
z=1

uizujzσ
2n
z .

For each n ≥ 1, we also have t
(n)
ij = t

(n)
ji .

The following lemma shows why the powers of the term-term matrix are
important.

Lemma 3.1. Let i and j be two terms, the ijth entry of T n is nonzero if and
only if there exists a path from i to j in the term-term graph with at most n
edges.

Proof. This lemma can be proven by induction over n.
For n = 1, it is clear, because of the definition of the term-term graph, that
tij 6= 0 is equivalent to the fact that there is an edge between i and j in the
term-term graph.
Now, supposing that the assumption is true for n, let us prove it for n + 1.
Since T n+1 = T nT , we have t

(n+1)
ij =

∑m
x=1 t

(n)
ix txj.

20 Chapter 3. Using Term Co-occurrences

So,

t
(n+1)
ij 6= 0 ⇐⇒ ∃x ∈ {1, . . . ,m} with t

(n)
ix txj 6= 0

⇐⇒ ∃x with t
(n)
ix 6= 0 and txj 6= 0

⇐⇒ ∃x such that there is a path between i and x with at most

n edges and there is an edge between x and j

⇐⇒ there is a path with at most n + 1 edges between i and j.

Definition 3.3 (Weight of a path). The weight of a path between i and j
in the weighted term-term graph is the product of the weights of the edges in
the path.

In fact, t
(n)
ij is the sum of the weights of all possible nth degree paths between

i and j.
There are two remarks that should be made here. First, the considered paths
may contain cycles. Second, tii 6= 0 for each term i in the collection. Thus,
there exists an edge from i to i in the term-term graph for each i ∈ {1, . . . ,m}.
Both remarks lead to the fact that t

(n)
ij can be viewed as a linear combination

of the weights of the first, second, . . . , nth order co-occurrence paths between
i and j. That is the statement made in Lemma 3.1.
An illustration can be seen in the following calculations. The ij-th entry of
T 2 when i 6= j for example is:

t
(2)
ij =

m∑
x=1

tixtxj

=
∑
x 6=i,j

tixtxj + tiitij︸︷︷︸
x=i

+ tijtjj︸︷︷︸
x=j

=
∑
x 6=i,j

tixtxj + tij · (tii + tjj) (3.1)

The first summand of equation 3.1 represents the weight of all second degree
paths between i and j, and the second summand represents the weight coming
from the first degree paths. Thus, we can see that t

(2)
ij depends on the first

and second degree paths.
We also have:

t
(2)
ii =

m∑
x=1

tixtxi

=
∑
x 6=i

t2ix + t2ii︸︷︷︸
x=i

(3.2)

3.2. Some Properties of the (Truncated) Term-term
Co-occurrence Matrix 21

That fact can also be seen when we consider the calculations of the ijth entry
of T 3 for i 6= j.

t
(3)
ij =

m∑
x=1

t
(2)
ix txj

=
∑
x 6=i,j

(∑
y 6=i,x

tiytyx + tix · (tii + txx)

)
txj because of equation 3.1

+

(∑
y 6=i

t2iy + t2ii

)
tij︸ ︷︷ ︸

x=i

according to equation 3.2

+

(∑
y 6=i,j

tiytyj + tij · (tii + tjj)

)
tjj︸ ︷︷ ︸

x=j

=
∑
x 6=i,j

(∑
y 6=i,x

tiytyx

)
txj +

∑
x 6=i,j

tixtxj(tii + txx)

+
∑
y 6=i

t2iytij + t2iitij

+

(∑
y 6=i,j

tiytyj

)
tjj + (tii + tjj)tijtjj

=
∑
x 6=i,j

(∑
y 6=i,j,x

tiytyx

)
txj +

∑
x 6=i,j

tijtjxtxj

+
∑
x 6=i,j

tixtxj(tii + txx + tjj)

+

(
m∑

y=1

t2iy + t2ii + t2jj + tiitjj

)
tij

=
∑
x 6=i,j

(∑
y 6=i,j,x

tiytyx

)
txj

+
∑
x 6=i,j

tixtxj(tii + txx + tjj)

+

(
m∑

y=1

t2iy +
m∑

x 6=i

t2jx + tiitjj

)
tij (3.3)

22 Chapter 3. Using Term Co-occurrences

Again, we can see from equation 3.3 that t
(3)
ij can be seen as a linear combi-

nation of the weight of all possible first, second and the third degree paths
between i and j.

As we saw in section 2.4, the truncated term-term matrix plays an important
role in LSI, and we have Tk = UkΣ

2κ
k UT

k . The ij-th entry t̃ij of Tk is

t̃ij =
k∑

z=1

uizujzσ
2κ
z

Tk is also a symmetric matrix.
Just as T contains the term-term similarities in the r-dimensional space, Tk

contains these in the k-dimensional space (i.e. the topic space). Each row
(or column) of Tk represents the similarities of a given term with all other
terms. By multiplying Tk with a query or a document vector, each entry
of the resulting vector is the dot product of a row of Tk and the query or
document vector. This means that the entries t̃ij of Tk intuitively have the
following effects:

• When t̃ij > 0, the weight of term j will be amplified, whenever term i
appears in the query or document vector and vice versa.

• When t̃ij < 0, the weight of term j will be decreased, whenever term i
appears in the vector and vice versa.

• t̃ij ≈ 0 means that there is no significant relation between both terms.

The two following theorems are helpful for a better understanding of the
truncated term-term matrix.

Theorem 3.1. Let r be the rank of the term-document A. If the singular
values (σi)i=1,...,r of A are pairwise different (which is almost always the case
for ‘real’ collections), then the truncated term-term matrix can be written as
a linear combination of the powers of T . That is,

Tk =
r∑

l=1

αlT
l

where the αi are real numbers just depending on σ1, . . . , σr.

Proof. We know that the ij-th entry of T l is

t
(l)
ij =

r∑
z=1

uizujzσ
2n
z

3.2. Some Properties of the (Truncated) Term-term
Co-occurrence Matrix 23

Let i and j be arbitrary, but fixed and t(l) = t
(l)
ij . We have:

t(l) =
∑r

z=1 wzσ
2l
z with wz = uizujz

=⇒ t(l) =

 σ2l
1
...

σ2l
r

T w1

...
wr

=⇒

 t(1)

...
t(r)

 =

 σ2
1 · · · σ2

r
...

. . .
...

σ2r
1 · · · σ2r

r

︸ ︷︷ ︸

=:M

 w1
...

wr

=⇒

 w1
...

wr

 = M−1

 t(1)

...
t(r)

 (3.4)

We observe that M is a so-called generalised Vandermonde matrix and is thus
invertible, as shown in [11], because the singular values are pairwise different.
Now, let T̃ = Tk and t̃ = T̃ij.
We have:

t̃ =
k∑

z=1

uxzuyzσ
2κ
z =

r∑
z=1

wzσ
2κ
z

With the equation 3.4, we also have

wz =
r∑

l=1

M−1
zl t(l)

Thus, we conclude that

t̃ =
k∑

z=1

(
r∑

l=1

M−1
zl t(l)

)
σ2κ

z

=
r∑

l=1

(
k∑

z=1

M−1
zl σ2κ

z

)
︸ ︷︷ ︸

=:αl

t(l)

=
r∑

l=1

αlt
(l) for arbitrary i and j.

And we can see that αl just depends on the singular values σ1, . . . , σr.

24 Chapter 3. Using Term Co-occurrences

Theorem 3.2. If the ij-th entry of the truncated term-term matrix Tk is
nonzero, then there exists a path from i to j in the term-term graph.

Proof. In [17], the authors provide a mathematical proof which uses the
formula for the entries of Tk. Yet this theorem can also be easily proven by
using Lemma 3.1 and Theorem 3.1:
Knowing that Tk is a linear combination of the powers of T , an entry in Tk

is nonzero if and only if there exists a power of T in which that entry is
nonzero. Thus, there exists a path from i to j in the term-term graph whose
length, according to Lemma 3.1, is even at most r.

3.3 Related Work

To our knowledge, [17] is the first work that studied the entries of the trun-
cated term-term matrix. The authors also presented the results of their
experiments in [15, 19]. This diploma thesis was inspired by these works.

In the articles, the authors first conducted some experiments with a few
collections to find out the number of pairs of terms in each order of co-
occurrence. They remarked that for most collections, the maximum co-
occurrence order was 3.
Furthermore, they tried to find a relation between the order of co-occurrence
of a pair of terms and the value of its entry in the truncated term-term ma-
trix. They found out that for most collections, the absolute value of the
Tk-entries of the third order co-occurrence pairs was very low compared to
that of the first and second co-occurrence pairs. That means, that such pairs
do not have much impact on the retrieval performance of LSI. The authors
thus concentrated on the second degree paths (i.e. first and second order
co-occurrence pairs) in the term-term graph.
For given intervals for the Tk-values, they computed the number of first and
second order pairs, the total number of second degree paths and the average
number of second degree paths coming from the first (resp. second) order
co-occurrence pairs. An example for a collection can be seen in table 3.1.
They then arrived at the following conclusions:

• First order co-occurrence pairs

– with higher number of second degree paths tend to have negative
Tk-values,

– with few paths tend to have low Tk-values,

– with a moderate number of paths tend to receive high Tk-values.

3.3. Related Work 25

Term Term Order 1 Order 2 Length 2 Av. No Paths Av. No Paths
Mat Value Pairs Pairs Paths Order 1 pairs Order 2 pairs
less than -0.2 68 632 323,952 4,764 513
-0.2 to -0.1 1,026 13,980 5,388,156 5,252 385
-0.1 to 0.0 52,734 7,416,342 598,493,140 11,349 81
0.0 to 0.1 1,256,054 11,292,268 1,500,874,348 1,195 133
0.1 to 0.2 607,618 89,546 298,811,456 492 3,337
0.2 to 0.3 229,274 4,166 135,964,358 593 32,637
0.3 to 0.4 107,380 366 76,171,768 709 208,120
0.4 to 0.5 57,808 46 47,004,230 813 1,021,831
0.5 to 0.6 34,208 8 31,258,040 914 3,907,255
0.6 to 0.7 21,790 2 21,734,644 997 10,867,322
0.7 to 0.8 15,040 - 15,991,638 1,063 -
0.8 to 0.9 10,180 - 11,607,916 1,140 -
0.9 to 1.0 7,466 - 9,000,714 1,206 -
1.0 to 2.0 23,352 - 32,179,792 1,378 -
2.0 to 3.0 3,374 - 5,595,238 1,658 -
3.0 to 4.0 734 - 1,293,838 1,763 -
4.0 to 5.0 250 - 480,136 1,921 -
5.0 to 6.0 82 - 156,506 1,909 -
6.0 to 7.0 48 - 90,186 1,879 -
7.0 to 8.0 20 - 33,366 1,668 -
over 8.0 14 - 33,386 2,385 -

Table 3.1: Average number of paths by Tk value for CRAN, k = 100 (from
[17])

• Second order co-occurrence pairs

– with a higher number of second degree paths tend to receive high
Tk-values,

– with a smaller number of paths tend to have low Tk-values.

The authors also proposed in [15] a simple function based on the conclusions
for the computation of an approximation of Tk.

When we take a closer look at table 3.1, we notice that they just divide
the total number of second degree paths within an interval by the number of
first (resp. second) order pairs in order to have the average number of second
degree paths coming from the first (resp. second) order co-occurrence pairs
within the interval. That means that they did not take into account the fact
that the total number of second degree paths contains first as well as second

26 Chapter 3. Using Term Co-occurrences

order co-occurrence pairs. The averages computed are thus incorrect.
Another mistake they made is that they defined LSI with κ = 0 (as can
be read in [19]), but experimented with the truncated term-term matrix for
κ = 1.
These observations lead to the fact that some of their conclusions are wrong.

3.4 Improvements and Experiments

In the previous section, we showed how we think the experiments in [17, 15,
19] should have been done.
We wrote a Java program, in order to reconstruct (in the right way) what
the authors observed. That is, the goal was to calculate the average number
of second degree paths coming from pairs of terms with first (resp. second)
order of co-occurrence in given collections and in given intervals of the trun-
cated term-term value of those collections.

We conducted our experiments with four collections:

• mpi-abstracts, a collection of 676 abstracts of publications at the Max-
Planck Institut in Saarbrücken with 3,283 terms,

• MED, a collection of medical abstracts containing 1,033 documents and
4,250 terms,

• CRAN, a collection with 1,379 documents and 4,410 terms and

• CISI, a collection with 1,460 documents and 5,753 terms.

The text-files of the collections are transformed into matrices in the Harwell-
Boeing format using a program called text2matrix1. The Harwell-Boeing
format was used because the term-document matrices are very sparse.

3.4.1 Java program

In order to complete the experiments, we needed a library which we could
use for the computation of the singular value decomposition of a matrix and
the computation of a the shortest path in graphs in Java. We used the Colt
library [6] for the SVD computation and the Data Structures Library in Java
(JDSL) [13] for the computation of the shortest path.

1It can be downloaded at http://www.mpi-sb.mpg.de/~bast/collections/index.
html

http://www.mpi-sb.mpg.de/~bast/collections/index.html
http://www.mpi-sb.mpg.de/~bast/collections/index.html

3.4. Improvements and Experiments 27

The program consists of a package containing classes which perform the fol-
lowing:

• read a matrix saved in the Harwell-Boeing format and compute its SVD
(using Colt),

• compute the original and the truncated term-term matrix for a given
number k of topics,

• compute the order of co-occurrence of each pair of terms. It was done
using two methods:

– the shortest path method : this is the method defined in Definition
3.1 and was realized by dint of JDSL,

– the T l method : this method originates from the knowledge we
have from Lemma 3.1. That is, it uses the fact that a pair of
terms has the co-occurrence order l if and only if its entry is zero
in T l−1 and non-zero in T l,

• compute the statistics needed.

The documentation of the program can be found under http://www.mpi-inf.
mpg.de/~regis/lsi/package/.

3.4.2 Results and Interpretation

Two examples of the results we had can be seen in table 3.2 and 3.3. In
these experiments, we only considered three cases for the computation of the
truncated term-term matrix. Namely for κ ∈ {−1, 0, 1}, which are the most
widely used cases. Although the Tk-values for κ = 0 are smaller than those
for κ = 1 and even smaller for κ = −1, we came to the same conclusions for
the different values of κ (see table 3.2 and 3.3).

After obtaining the results, we first noticed, as the authors did in [17], that
all pairs of terms in the collections have an order of co-occurrence of at most
3. We also noticed that the third order co-occurrence pairs have Tk-values
which are not significant compared to other Tk-values.

As we can see from table 3.2 and 3.3, first order co-occurrence pairs of terms
with a low number of second order paths tend to have low Tk-values, as was
also observed in [17]. However unlike what the authors of [17] stated about
first order pairs with many (resp. a moderate number of) paths, we found

http://www.mpi-inf.mpg.de/~regis/lsi/package/
http://www.mpi-inf.mpg.de/~regis/lsi/package/

28 Chapter 3. Using Term Co-occurrences

Term Term Order 1 Order 2 Order 3 Length 2 Av. No Paths Av. No Paths Av. number
Mat Value Pairs Pairs Pairs Paths Order 1 pairs Order 2 pairs paths
< -2 2,173 6,743 0 3,942,722 650.50 375.08 442.21
-2 to -1.5 862 4,816 0 2,007,115 562.59 316.06 353.49
-1.5 to -1 1,465 11,969 0 4,171,449 525.74 284.17 310.51
-1 to -0.9 429 4,604 0 1,407,614 513.06 257.93 279.68
-0.9 to -0.8 526 6,062 0 1,750,367 489.89 246.24 265.69
-0.8 to -0.7 606 8,338 0 2,276,548 496.13 236.97 254.53
-0.7 to -0.6 759 11,731 0 2,943,794 469.74 220.55 235.69
-0.6 to -0.5 906 17,545 0 4,039,202 453.55 206.80 218.92
-0.5 to -0.4 1,174 27,665 0 5,726,987 437.15 188.46 198.58
-0.4 to -0.3 1,582 47,397 0 8,729,256 408.06 170.55 178.22
-0.3 to -0.2 2,251 93,432 0 15,008,670 394.27 151.14 156.86
-0.2 to -0. 3,583 247,066 0 32,019,266 348.22 124.55 127.75
-0.1 to 0 7,571 2,965,118 1 161,183,000 270.68 53.67 54.22
0 to 0.1 31,179 3,750,062 0 227,459,536 162.68 59.30 60.15
0.1 to 0.2 43,089 594,296 0 84,593,051 182.17 129.13 132.72
0.2 to 0.3 41,659 279,655 0 54,160,445 209.32 162.49 168.56
0.3 to 0.4 37,979 163,859 0 39,992,422 233.47 189.95 198.14
0.4 to 0.5 34,867 105,958 0 31,456,982 253.30 213.53 223.38
0.5 to 0.6 32,898 72,590 0 25,982,161 270.33 235.42 246.30
0.6 to 0.7 29,699 53,259 0 21,979,871 284.11 254.27 264.95
0.7 to 0.8 28,329 39,880 0 19,165,799 292.48 272.82 280.99
0.8 to 0.9 27,177 30,540 0 16,947,385 299.18 288.69 293.63
0.9 to 1 25,735 24,109 0 15,061,425 302.78 301.53 302.17
1 to 1.5 98,540 67,573 0 57,070,447 348.58 336.24 343.56
1.5 to 2 72,255 29,060 0 39,695,955 395.33 383.05 391.81
2 to 2.5 55,081 14,529 0 30,015,268 435.43 415.12 431.19
2.5 to 3 43,408 7,787 0 23,718,379 468.49 434.33 463.29
3 to 3.5 34,986 4,754 0 19,550,432 497.45 451.53 491.96
3.5 to 4 29,202 2,886 0 16,396,071 515.49 465.28 510.97
4 to 4.5 24,922 1,885 0 14,204,393 535.00 462.10 529.88
4.5 to 5 21,075 1,189 0 12,387,863 561.17 471.96 556.41
5 to 6 34,184 1,423 0 20,661,194 584.56 476.89 580.26
6 to 7 26,420 714 0 16,568,838 614.46 468.99 610.63
7 to 8 21,193 392 0 13,827,703 643.76 470.42 640.62
8 to 9 17,290 206 0 11,619,018 666.38 472.02 664.10
9 to 10 14,663 121 0 10,225,312 693.30 491.93 691.65
10 to 11 12,366 96 0 8,814,232 708.90 500.17 707.29
11 to 12 10,614 48 0 7,769,493 730.02 439.38 728.71
12 to 13 9,323 33 0 6,996,487 748.69 498.45 747.81
13 to 14 8,138 28 0 6,245,432 765.84 465.71 764.81
14 to 15 7,134 20 0 5,623,067 787.05 411.60 786.00
15 to 16 6,449 11 0 5,140,804 796.52 369.27 795.79
16 to 17 5,826 2 0 4,765,596 817.80 548.00 817.71
17 to 18 5,179 6 0 4,296,258 828.89 572.50 828.59
18 to 19 4,719 3 0 3,914,436 829.40 173.00 828.98
19 to 20 4,451 3 0 3,817,716 857.41 456.67 857.14
20 to 25 17,206 1 0 15,080,668 876.45 499.00 876.43
25 to 30 12,197 2 0 11,264,615 923.54 110.50 923.40
≥ 30 69,059 0 0 83,269,847 1,205.78 0.00 1,205.78

Table 3.2: Average number of paths by Tk value for CRAN, k = 100 and
κ = 1

3.4. Improvements and Experiments 29

Term Term Order 1 Order 2 Order 3 Length 2 Av. No Paths Av. No Paths Av. number
Mat Value Pairs Pairs Pairs Paths Order 1 pairs Order 2 pairs paths
< -0.002 96,991 36,361 0 100,745,680 891.70 392.15 755.49
-0.002 to -0.0015 23,002 21,806 0 22,364,660 660.18 329.24 499.12
-0.0015 to -0.001 34,797 49,447 0 35,355,748 603.79 290.12 419.68
-0.001 to -0.0009 9,334 17,630 0 9,974,464 563.94 267.19 369.92
-0.0009 to -0.0008 10,267 21,678 0 11,313,455 553.47 259.75 354.15
-0.0008 to -0.0007 11,566 28,190 0 13,178,283 536.39 247.41 331.48
-0.0007 to -0.0006 13,326 37,372 0 15,614,471 511.08 235.57 307.99
-0.0006 to -0.0005 15,566 51,148 0 19,175,902 494.96 224.28 287.43
-0.0005 to -0.0004 18,023 73,612 0 24,008,273 477.89 209.14 262.00
-0.0004 to -0.0003 21,633 113,833 0 31,774,811 451.89 193.26 234.56
-0.0003 to -0.0002 26,732 197,340 0 45,071,122 419.94 171.51 201.15
-0.0002 to -0.0001 34,217 442,856 0 75,056,354 383.98 139.81 157.33
-0.0001 to 0 49,876 3,591,518 1 232,530,095 326.05 60.22 63.86
0 to 0.0001 84,928 3,326,963 0 222,152,303 248.53 60.43 65.11
0.0001 to 0.0002 78,521 347,766 0 68,942,075 267.64 137.81 161.73
0.0002 to 0.0003 61,282 135,403 0 41,243,217 299.55 169.02 209.69
0.0003 to 0.0004 48,408 69,365 0 28,930,127 323.77 191.12 245.64
0.0004 to 0.0005 39,463 39,832 0 21,826,822 341.06 210.07 275.26
0.0005 to 0.0006 33,641 24,962 0 17,674,232 359.96 222.93 301.59
0.0006 to 0.0007 27,085 16,660 0 14,194,374 379.49 235.04 324.48
0.0007 to 0.0008 22,939 11,983 0 12,030,287 395.50 246.84 344.49
0.0008 to 0.0009 19,937 8,503 0 10,382,877 411.85 255.41 365.08
0.0009 to 0.001 17,040 6,173 0 8,932,758 427.37 267.34 384.82
0.001 to 0.0015 60,220 15,959 0 32,381,664 463.61 279.67 425.07
0.0015 to 0.002 35,593 5,955 0 20,255,795 517.61 307.72 487.53
0.002 to 0.0025 24,309 2,762 0 14,663,550 567.31 316.04 541.67
0.0025 to 0.003 17,192 1,483 0 11,058,843 614.81 329.79 592.17
0.003 to 0.0035 12,539 876 0 8,444,113 649.85 337.43 629.45
0.0035 to 0.004 9,819 552 0 6,998,190 693.56 340.88 674.78
0.004 to 0.0045 7,904 335 0 5,771,548 715.34 350.73 700.52
0.0045 to 0.005 6,416 268 0 4,861,567 742.93 354.31 727.34
0.005 to 0.006 9,703 337 0 7,778,390 788.77 370.74 774.74
0.006 to 0.007 6,999 179 0 5,958,003 842.09 358.70 830.04
0.007 to 0.008 5,276 120 0 4,692,478 880.97 370.53 869.62
0.008 to 0.009 4,271 72 0 3,968,815 922.96 372.67 913.84
0.009 to 0.01 3,353 36 0 3,185,366 946.01 372.31 939.91
0.01 to 0.011 2,559 40 0 2,522,592 979.49 401.70 970.60
0.011 to 0.012 2,155 19 0 2,180,624 1,007.87 456.05 1,003.05
0.012 to 0.013 1,738 18 0 1,834,369 1,050.28 498.61 1,044.63
0.013 to 0.014 1,532 14 0 1,560,520 1,014.61 438.43 1,009.39
0.014 to 0.015 1,342 6 0 1,473,674 1,096.33 399.67 1,093.23
0.015 to 0.016 1,092 3 0 1,194,209 1,092.98 225.67 1,090.60
0.016 to 0.017 984 6 0 1,077,567 1,091.41 603.00 1,088.45
0.017 to 0.018 871 6 0 967,508 1,107.96 411.83 1,103.20
0.018 to 0.019 758 0 0 871,450 1,149.67 0.00 1,149.67
0.019 to 0.02 613 3 0 696,109 1,134.57 206.00 1,130.05
0.02 to 0.025 2,351 11 0 2,794,672 1,187.11 343.36 1,183.18
0.025 to 0.03 1,307 4 0 1,592,272 1,216.41 606.25 1,214.55
≥ 0.03 2,908 1 0 3,688,313 1,268.15 547.00 1,267.90

Table 3.3: Average number of paths by Tk value for CRAN, k = 100 and
κ = 0

30 Chapter 3. Using Term Co-occurrences

out that first order pairs with a higher average number of paths tend to re-
ceive high Tk-values. And first order pairs with a moderate number of paths
can have positive as well as negative Tk-values.
Second order co-occurrence pairs of terms with a smaller number of second
order paths have a very low Tk-value, as remarked in [17]. We also observed,
as in [17], that second order pairs with a higher number of paths have higher
Tk-values. Yet second order pairs with a moderate number of paths do not
necessarily tend to have negative Tk-values , as the authors stated in [17],
but can also have positive values as well.

3.5 Conclusion

In this chapter, we studied the importance of term co-occurrences for LSI
(i.e. Tk) based on what the authors investigated in [17].
We first noticed that in [17], the authors made some mistakes whilst trying
to detect the relation between the entries of the truncated term-term matrix
and the term co-occurrences. We corrected those mistakes and thus had
slightly different conclusions.
However concerning some cases, we are not able to say why the entries of Tk

are positive or negative. Thus, a further task would be necessary to be able
to formulate more precisely and with sound arguments how the truncated
term-term matrix uses the term co-occurrences.
In the next chapter, we will use some approximations of the truncated term-
term matrix in order to have a better understanding of the relation between
Tk and the term co-occurrence information.

Chapter

4
Approximating the Trun-

cated Term-term Matrix

In this chapter, we try to find an approximation of the truncated term-term
matrix. More precisely, we want to compute matrices using the term co-
occurrence information (without computing the SVD) which gives us com-
parable or even better retrieval performances than Tk. We will then see that
it is possible to have good results with the approximations of Tk, even though
we are not already able to compute them automatically yet. The approxi-
mations we have in this chapter will help us to have a better understanding
of how LSI actually works.

4.1 Idea

According to the last chapter, the first and second co-occurrence pairs of
terms play an important role for the value of the entries of Tk. From Lemma
3.1, we know that T and T 2 are the important matrices for these two kinds
of pairs of terms, because they are the only ones which contain just those
two orders of co-occurrences. The idea here is to approximate Tk by using
those two matrices.

Before approximating Tk, we first have to try to detect which kind of re-
lation exists between Tk and T and also between Tk and T 2 (i.e. between the
entries of the matrices). That would then be our starting point for finding

31

32 Chapter 4. Approximating the Truncated Term-term Matrix

Variants of LSI κ = 0 κ = 1 κ = −1

best average precision 0.4872 0.4629 0.4370
Med (rank = 1033)

value of k 126 685 119

best average precision 0.4165 0.3437 0.3617
Time (rank = 425)

value of k 201 422 81

best average precision 0.3255 0.1736 0.2766
Cran (rank = 1400)

value of k 1314 492 151

Table 4.1: Best average precision with our collections for three variants of
LSI.

an approximation of Tk.

4.2 Experiments

All the programs used for the experiments were written in Matlab. For the
experiments, we had the following collections which were used because the
queries and the relevance judgement sets were already available:

• MED, a collection of medical abstracts containing 1,033 documents and
4,250 terms. There were 30 queries available for this collection.

• CRAN, a collection with 1,379 documents and 4,410 terms. Here, we
had 225 queries.

• TIME, a collection with 1,460 documents and 5,753 terms. There were
83 queries available.

For each collection and for each value of κ ∈ {−1, 0, 1}, we computed the
value of k ∈ {1, . . . , r} (where r is the rank of the term-document matrix) for
which Tk had the best average precision. Here, the average precision is the
average over the averages of the precisions of all the queries at the recalls 5%,
10%, 15%, . . . ,100%. In Table 4.1, we can see the values of k for which we
had the best average precision for each value of κ and the respective average
precisions.
In order to detect a relation between Tk and T (resp. T 2) or to approximate
Tk, we always used the truncated term-term matrix computed with the value
of k for which the average precision is maximised.

4.2. Experiments 33

4.2.1 Detecting a Relation between Tk and T (resp. T 2)

In order to detect a relation between Tk and T , we used two methods.

In the first method, we plotted clouds of a set of points. Each point of
those clouds corresponded to a randomly chosen pair of terms and had the
coordinates (x, y), such that x is the entry of the pair in T (resp. T 2) and y
the entry of the pair in Tk. We then tried to recognise any kind of relation
from the plots.

In the second method, we computed the correlation coefficient between the
Tk-values of a set of randomly chosen pairs of terms and their T -values (resp.
T 2-values). The formula used for this purpose is the standard one for the
correlation coefficient and is also explained in [20]. So, let X and Y be
two random variables which represent two lists of numbers, the correlation
coefficient of X and Y is defined as:

ρXY =
Cov (X, Y)

σXσY

,

where Cov (X, Y) is the covariance of X and Y , σX (resp. σY) is the standard
deviation of X (resp. Y). The value of ρXY is always between −1 and 1.
And a value close to −1 or 1 implies that X and Y are well correlated, a
value close to 0 means that there is no correlation between X and Y .
This method was also applied for κ ∈ {−1, 0, 1}.

For both methods, the sets of pairs of terms were chosen randomly, because
the total number of the pairs is very large1. For each method, the sets were
chosen independently, such that we could assume that a detected relation
does in fact exist.

We first wanted to know whether a relation exists between the entries
of Tk and those of T . Due to the fact that Tk = UkΣ

2
kU

T
k for κ = 1 and

T = UΣ2UT , there was a strong linear relation between Tk and T for κ = 1
(see Figure 4.1 (a), (b) and (c)). The correlation coefficient between the
entries of Tk and those of T was also fairly high (it was always above 0.95).
But for other values of κ, we couldn’t detect any kind of relation, as can be
seen in Figure 4.1, and the correlation coefficients were low (i.e. between 0.1
and 0.4).

We then wanted to know if a relation exists between the entries of Tk and

1For a m× n term-document matrix, the total number of pairs of terms is m(m+1)
2

34 Chapter 4. Approximating the Truncated Term-term Matrix

(a) (b) (c)

Figure 4.1: Plots Tk-T for Med. In (a) Tk was computed with κ = 1, in (b)
κ = 0 and in (c) κ = −1.

(a) (b) (c)

Figure 4.2: Plots Tk-T
2 for Med. In (a) Tk was computed with κ = 1, in (b)

κ = 0 and in (c) κ = −1.

those of T 2. However we obtained the same result as with T . That is, there
was a slightly linear relation between the entries of Tk and those of T 2 for
κ = 1 and no apparent relation for κ ∈ {0,−1} as can be seen in Figure 4.2.
The correlation coefficients also confirm these observations.

Thereupon, we wanted to find a relation between Tk and both T and T 2. For
that purpose, we made a restriction on the original term-term value of the
pairs of terms and then tried to find a relation between the entries of Tk and
those of T 2 for the pairs which satisfied the restriction. Here, the restriction
means, that all plotted pairs must have a particular T -value t, or have to be
between two values t1 and t2.
The clouds obtained in this case were more interesting than those obtained
before. These clouds were influenced by one or two lines, depending on the
values of κ and k used to compute Tk.
When κ = 1, the clouds are always influenced by two lines. The first line

always has a positive slope, and that slope increases the higher k becomes.
The second line is always horizontal, and located at the Tk-value t (the T -

4.2. Experiments 35

(a) (b)

Figure 4.3: Plots Tk-T
2 for Med (κ = 1) with a restriction on the T -value.

For both plots, the T -value of each pair is 20. In (a) Tk was computed with
k = 200 and in (b), k = 500.

value of all pairs in the cloud). An example can be seen in Figure 4.3.
But when κ ∈ {0,−1}, the form of the clouds depends on the value of k as
we can see in Figure 4.4. When k is small (i.e. about 1/10-th or 2/10-th of
the rank), the cloud is affected by two lines, the first one having a positive
slope and the second one a negative slope. For moderate values of k (i.e.
about 4/10-th of the rank), the first line (with the positive slope) seems to
disappear. The cloud is thus influenced by just one line, which has a negative
slope. And for high values of k (i.e. about 8/10-th of the rank or above),
the cloud is then clearly influenced by two lines again. The first line has a
negative slope, and the second one is horizontal and located at the Tk-value
0.

Furthermore, when we computed the correlation coefficient between the
entries of Tk and those of T 2 which have a given T -value, we first noticed
that the value obtained is very small, which is coherent since we saw that
most of the clouds were influenced by two lines. Yet, when we also made a
restriction on the T 2-values of the pairs of terms, the correlation coefficients
obtained confirmed the observations from the clouds.

With κ = 0 for example (see Table 4.1), the optimal value of k, accord-
ing to the average precision, for the collection Med is small compared to
the rank of the term-document matrix. Thus, the clouds obtained in this
case are influenced by two lines, the first one having a positive slope and
the second one a negative slope (as in Figure 4.4(a)). Since for each T -value
the first line always starts from the origin (i.e., the point for which we have

36 Chapter 4. Approximating the Truncated Term-term Matrix

(a) (b) (c)

Figure 4.4: Plots Tk-T
2 (κ = 0) with a restriction on the T -value. For the

three plots, the T -value of each pair is 20. In (a) we used the collection Med
and Tk was computed with k = 126. Time was used for (b) k = 201 and in
(c), we used Cran and k = 1314.

t̃ij = t2ij = 0) and seems to have the same slope, we assumed that the T -
value does not have an impact on it. We could thus see from the plots that
a possible approximation of Tk could be

T̃ ≈ min
(
β1T

2, α1T − β2T
2
)
. (4.1)

Thus finding the appropriate α1, β1 and β2 would be a starting point in order
to find an approximation of that Tk.
Knowing that the ranking is not affected when the truncated term-term
matrix used is multiplied by a factor, and also that for each x ∈ R and two
matrices A and B, we have min(c · A, c · B) = c ·min(A, B), the number of
variables we have to find can be reduced when we use the formula:

T̃ ≈ min
(
T 2, αT − βT 2

)
, (4.2)

with α = α1

β1
and β = β2

β1
.

For κ = 0 again, the optimal value of k for the collection Time is moderate,
compared to the rank of the term-document matrix. The clouds obtained
here are thus influenced by just one line, which has a negative slope (as in
Figure 4.4(b)). Thus, we tried here to approximate the truncated term-term
value with

T̃ ≈ αT + βT 2, (4.3)

where α and β have to be determined.

With the collection CRAN and also κ = 0, the optimal value of k is very
high (see again Table 4.1). the clouds obtained here practically consist of

4.2. Experiments 37

two lines, the first having a very high negative slope (almost −∞), and the
second being horizontal and located at the Tk-value 0 (as in Figure 4.4(c)).
Since we couldn’t deduce a reasonable formula from the clouds, we tried to
approximate Tk with the formula seen in equation 4.2 and equation 4.3.

4.2.2 Approximation of Tk

Here, we tried to find some matrices which can be used in order to approx-
imate Tk, i.e., we tried to find the optimal values of α and β for which we
have the best average precision when T̃ from equation 4.2 and equation 4.3
is used as the document expansion matrix. For this purpose, we used the op-
timisation method of Matlab which is defined in [21]. That method is called
Nelder-Mead Simplex algorithm and was first presented in [25]. The method
requires initial values in order to compute the optimum.
As in the previous section, we tried to approximate Tk for κ ∈ {−1, 0, 1}.
The approximations were compared to Tk with respect to the average pre-
cisions. We also computed the average precision for the case in which the
identity matrix is used as the document expansion matrix (which is in fact
the basic vector space model with the cosine similarity measure) in order to
compare it with the approximations.

4.2.2.1 Approximation of Tk for κ = 0

We started with κ = 0, because the ranking can be easily computed, as seen
in equation 2.5. For each collection, we tried to approximate the best trun-
cated term-term matrix (i.e. the one with the best average precision as seen
in Table 4.1) using the two formulas (i.e. equations 4.2 and 4.3) we derived
in Section 4.2.1.

Approximation with min(T 2, αT − βT 2)
Our task here was to compute T̃ from equation 4.2 for which the average
precision is maximised. We first had to compute the initial values for α and
β.

For Med, we first tried ‘manually’ to calculate α1, β1 and β2 from equation
4.1 (i.e., we chose some points from the plots in order to determine those
values). We then calculated α and β from equation 4.2 using the formulas
α = α1

β1
and β = β2

β1
. Once we had the desired values, we then optimised them

in order to have the values for which the average precision of T̃ is maximised.
The average precision obtained was close to that of LSI (i.e. Tk).

38 Chapter 4. Approximating the Truncated Term-term Matrix

We also computed the optimal T̃ with α = 0 and β = 0 as initial values.
The result we obtained here was better than the previous one and was much
closer to that of LSI.
For Time and Cran, we used α = 0 and β = 0 as initial values, because this
formula is not derived from their T 2−Tk plots. For neither of the collections,
the average precision was as close to that of LSI as with Med.

Approximation with αT + βT 2

Here, we can first notice that this case is a kind of simplification of the one
before.
This formula was derived from the plots of Time. So for Time, we manually
computed the initial values of α and β as in the previous case. The average
precision obtained after optimising was then exactly the same we had with
the formula min(T 2, αT − βT 2), yet with other values of α and β. In addi-
tion, when we used α = 0 and β = 0 as initial values, we obtained the same
average precision.

For Med and Cran we used α = 0 and β = 0 as initial values. And even for
these collections, the average precisions obtained were exactly the same we
had with min(T 2, αT − βT 2) (with α = 0 and β = 0 as initial values).

An overlook of all the average precisions for the approximations can be seen
in Table 4.2.

4.2.2.2 Approximation for κ = 1 and κ = −1

Here, we used the formula of equation 2.4 in order to compute the rankings,
and thus the average precisions. We first noticed that the average precisions
obtained with LSI using these two values of κ were slightly worse than those
obtained with κ = 0, as already remarked in [27] (see Table 4.1). We also
computed the best average precisions of the two approximations already seen
in Section 4.2.2.1. However the results we had were not as good as those
obtained in the previous section.

4.2.2.3 Discussion

Let us now analyse the results.
We should first of all remark that for each approximation, the entries of the
matrices αT and those of βT 2 had approximately the same size. Thus, neither
of them was dominant in the approximations αT+βT 2 and min(T 2, αT − βT 2).

4.2. Experiments 39

Approximations LSI (κ = 0) min
(
T 2, αT − βT 2

)
αT + βT 2

best average
precision

0.4872 0.4793 0.4831 0.4831 0.4831

optimal α − 510.36 5.11 · 10−4 1675.4 5.11 · 10−4

Med
optimal β − 0.0473 4.66 · 10−8 −0.1526 −4.66 · 10−8

initial α − 1600 0 1600 0
initial β − −0.16 0 −0.16 0
best average
precision

0.4165 0.3729 0.3729 0.3729 0.3729

optimal α − 7.59 · 10−4 2.5 · 10−4 7.59 · 10−4 2.5 · 10−4

Time
optimal β − 1.6 · 10−8 5.28 · 10−9 −1.6 · 10−8 −5.28 · 10−9

initial α − 7.5 · 10−4 0 7.5 · 10−4 0
initial β − −1.5 · 10−8 0 −1.5 · 10−8 0
best average
precision

0.3255 0.2355 0.2355

optimal α − 3.8 · 10−4 3.8 · 10−4

Cran
optimal β − 7.5 · 10−9 −7.5 · 10−9

initial α − 0 0
initial β − 0 0

Table 4.2: Average precisions of the approximations of the truncated term-
term matrices for all collections.

For each collections, we always had the same optimal average precision for
both approximations (see Table 4.2). We even had the same optimal values
for α and β when both approximations where optimised with (0, 0) as initial
value for (α, β).
The formula min (T 2, αT − βT 2) was derived from the collection Med (see
Figure 4.4(a)). We also know that the T 2−Tk plot from Figure 4.4(a) is rep-
resentative for every collection with small optimal value k for the truncated
term-term matrix. In this case, the cloud with the positive slope in the plot is
not significant and does not improve the retrieval performance. Tk can thus
be approximated by only using the formula αT + βT 2, which represents the
second cloud in the plot. LSI thus here seems to make some computations
which are not relevant in order to have a better retrieval performance.
For Time, which is the collection from which the formula αT + βT 2 was de-
rived (see Figure 4.4(b)), we also observed that the optimal values for α and
β were even the same for both approximations. This also means that the
first argument of min (T 2, αT − βT 2) is not important.
For Cran, which represents collections having a large optimal value of k for
Tk, we also had the same average precision and optimal values for α and β
for both approximations.
With the approximation αT + βT 2, the optimal α was always positive and

40 Chapter 4. Approximating the Truncated Term-term Matrix

β negative for all collections. It thus represents the clouds with the negative
slope that can be seen on the plots for Med and Time (see Figure 4.4(a) and
(b)). On Figure 4.4(c), we can see that such a cloud does not exist for Cran.
That explains the fact that the average precisions obtained for Cran are not
good. Other attempts to approximate the truncated term-term matrix of
Cran were not successful.
We also observed that for the collections Med and Time, we had different
optimal values of α and β, but the same average precisions with the approxi-
mation αT + βT 2. This fact can be easily explained, when we notice that
for those collections, the ratio α

β
is always the same for the different optimal

pairs. That means that the first approximation can be written as a factor
multiplied by the other approximation. Let T1 be the matrix obtained from
the first optimal pair (α1, β1) (i.e. T1 = α1T + β1T

2), and T2 the matrix
obtained with the second one (α2, β2) (T2 = α2T + β2T

2). Because of the
fact that

α1

β1

=
α2

β2

⇐⇒ α1β2 = α2β1 ⇐⇒
α1

α2

=
β1

β2

we have
α2

α1

T1 = α2T +
α2β1

α1︸ ︷︷ ︸
=β2

T 2 = T2

The equation above justifies the same average precisions for both optimal
pairs, knowing that α2

α1
> 0 and β1

β2
> 0. That fact can also be seen on

Figure 4.6. The points on the ridge on that figure represents the values for
which the average precision is maximal. We can also remark that the value
of the average precision drops to 0 when α becomes negative. This is due to
fact that the ranking computed in that case is almost the reverse of the one
computed with a positive α.
With the formula min (T 2, αT − βT 2), we also have such a ridge (see Figure
4.5). However, the ridge in this case is not straight line, because the higher
α and β becomes, the influence of the first argument of the formula (i.e. T 2)
also grows. The average precision then drops very slowly, such that it cannot
be noticed on the plot. When we analyse the formula αT + βT 2 using what
we calculated in equation 3.1, we have for i, j ∈ {1, . . . ,m} with i 6= j:

t̃ij = αtij + βt
(2)
ij

= αtij + β
(∑

tixtxj + (tii + tjj)tij

)
= (α + βtii + βtjj)tij + β

∑
tixtxj (4.4)

We can see from equation 4.4, that the ijth entry in the approximation is a
combination of the weights of the first and the second degree co-occurrence

4.2. Experiments 41

−1
−0.5

0
0.5

1

−200

0

200

400

600

800
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

β
α

av
. p

re
c.

4.6581
4.6581

4.6581
4.6582

4.6582
4.6582

4.6582

x 10−8

5.1134

5.1134

5.1135

5.1136

5.1136

x 10−4

0.4831

0.4831

0.4831

0.4831

0.4831

0.4831

(a) (b)

Figure 4.5: Average precision with min (T 2, αT − βT 2) for different α and β.
(a) is a global view and (b) is a zoomed view at the optimum.

−3
−2

−1
0

1
2

−5000

0

5000

10000

15000
0

0.1

0.2

0.3

0.4

0.5

βα

av
. p

re
c.

−4.6632
−4.6632

−4.6632
−4.6632

−4.6631
−4.6631

−4.6631

x 10−8

5.1189

5.1189

5.119

5.119

5.119

x 10−4

0.4831

0.4831

0.4831

0.4831

0.4831

0.4831

βα

av
. p

re
c.

(a) (b)

Figure 4.6: Average precision with αT + βT 2 for different α and β. (a) is a
global view and (b) is a zoomed view at the optimum.

paths between i and j. Thus, the goal of the optimisations that we made
in this chapter was to find which amount of first and second degree paths is
needed for a good retrieval performance. LSI actually does that automati-
cally for each pair of terms (by just using the singular value decomposition).
We see for example on Figure 4.5 and 4.6 the behaviour of the average pre-
cisions, when we vary those two parameters. With min (T 2, αT − βT 2), the
average precision drops very fast for positive values of β. In that case, the
expression αT −βT 2 is negative and the first argument of the approximation
is not important. That then leads to a reverse ranking.

42 Chapter 4. Approximating the Truncated Term-term Matrix

4.2.3 Combining LSI (for κ = 0) with the basic vector
space model

Here we wanted to combine LSI with the raw vector space in order to ob-
tain better rankings than LSI, and thus better average precisions. We know
that computing the rankings in the basic vector space model is the same as
computing the rankings with equation 2.5 using the identity matrix I as the
document expansion matrix. Thus combining it with LSI means that we use
a T̃ as the expansion matrix, such that

T̃ = λI + (1− λ) Tk, (4.5)

for λ ∈ [0, 1] and an appropriate Tk.

For each collection, we started by computing the value of λ and k for which
the average precision is maximised. We did so by optimising λ for each pos-
sible value of k. The average precision computed with the matrices obtained
was always greater than the approximation we had in the section before, and
even greater or equal the average precision from LSI.
We then tried to approximate that combination. We did so by using the
identity matrix I and αT +βT 2. We chose αT +βT 2 for this approximation,
because its formula is simpler than min (T 2, αT − βT 2) and mainly because
we had the same results with both formulas. Thus, our goal was to find the
values of α and β for which the matrix

T̃ = I + αT + βT 2 (4.6)

had the best average precision. For this purpose also, we used the formula
in equation 2.5 and (α, β) = (0, 0) as initial value.

Discussion

The average precisions obtained here were always better than that of LSI. For
Med and Cran, it was even better than the one obtained with λI+(1− λ) Tk.
The results can be seen on Table 4.3. We also remarked here that the optimal
α is positive and β negative for Med and Time, as for the approximations in
the section before. For Cran though, it was quite the the opposite, and we
did not find any explanation for that fact.

A comparison of all the approximations for each collection can be seen in
Figures 4.8, 4.9 and 4.10. The case min (T 2, αT − βT 2) was removed from

4.2. Experiments 43

Collections Med Time Cran

Vector space model average precision 0.4574 0.4136 0.3250

LSI (κ = 0) average precision 0.4872 0.4165 0.3255

average precision 0.5007 0.4361 0.3255
Combination

value of k 107 50 1314
λI + (1− λ) Tk value of λ 0.4125 0.4561 0

average precision 0.5020 0.4210 0.3300
I + αT + βT 2 value of α 1.7 · 10−3 5.1 · 10−5 −9.5 · 10−4

value of β −1.5 · 10−7 −5.4 · 10−10 2.4 · 10−9

Table 4.3: Average precisions of the approximations of the combination of
LSI and the vector space model

−2
−1.5

−1
−0.5

0
0.5

1

−2000
0

2000
4000

6000
8000

10000
0

0.1

0.2

0.3

0.4

0.5

βα

av
. p

re
c.

Figure 4.7: Behaviour of the average precision with I + αT + βT 2 (Med).

44 Chapter 4. Approximating the Truncated Term-term Matrix

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

LSI (kappa = 0)
aT + bT2

I + aT + bT2

I

Figure 4.8: Comparison of the approximations of Tk for κ = 0 for Med

0 0.2 0.4 0.6 0.8 1
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Recall

P
re

ci
si

on

LSI (kappa = 0)
aT + bT2

I + aT + bT2

I

Figure 4.9: Comparison of the approximations of Tk for κ = 0 for Time

4.3. Conclusion 45

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Recall

P
re

ci
si

on

LSI (kappa = 0)
aT + bT2

I + aT + bT2

I

Figure 4.10: Comparison of the approximations of Tk for κ = 0 for Cran

the comparison because the results were the same as for the approximation
αT + βT 2.

For the collection Med, we can first notice that LSI and the first approxima-
tion (i.e. αT + βT 2) have comparable retrieval performances. Second, we
can see that although the identity matrix (i.e., the basic vector space model)
provides better precisions for small recalls, its precision curve drops faster
than the other curves. And third, we can also see that the approximation
I + αT + βT 2 combines the best precision of both the vector space model
and LSI.

For Time and Cran, the precision-recall curve of αT + βT 2 is not as good
as the ones of LSI or I + αT + βT 2. Yet we can see that the approximation
I + αT + βT 2 is always better than LSI and the basic vector space.

Each entry in I +αT +βT 2 is a combination of the first and the second order
co-occurrences of the respective pair of terms, with an additional weight for
the pairs (t, t) for a term t.

4.3 Conclusion

In this chapter, we computed some approximations of the truncated term-
term matrix and analysed them. Due to the fact that T and T 2 were the

46 Chapter 4. Approximating the Truncated Term-term Matrix

only matrices used for the computations of the approximations, and knowing
that the entries of these matrices consist of the first and second order co-
occurrences, we also see here (as in chapter 3), that LSI essentially uses the
term-term relationships based on co-occurrence information.
In [2], the authors showed, using the so-called synonymy graph, that the
entries of the truncated term-term matrix (for κ = 0) strongly depends on
the term-term relationships of the pairs of terms. Thus, we see that LSI
(in fact the singular value decomposition) computes those relationships in
a very efficient way, although some of the computations do not improve its
retrieval performance. An explicit computation of these relationships would
be very expensive, because we would need to compute them for each pair of
terms. And we know that there exists m(m+1)

2
pairs of terms for an m × n

term-document matrix.

Chapter

5

Conclusion

LSI is a retrieval technique based on the dimension reduction of the term-
document matrix from the vector space model, which can cope with polysemy
and synonymy, two well-known problem in information retrieval. Experimen-
tally it has been shown that, for many collections, the retrieval performance
obtained with LSI is better than that obtained with the basic vector space
model.

In this thesis, we study the relation between the entries of the truncated
term-term matrix, which is the document expansion matrix produced by
LSI, and the term co-occurrence information of the respective pairs of terms.
We first corrected what the authors carried out in [17, 15]. In contrast to
what they claim, we found out that it is not possible to predict the sign
of an entry of the truncated term-term matrix when only the degree of co-
occurrence of the respective pair of terms is known.

Second, we computed some approximations of the truncated term-term ma-
trix by using the first and second co-occurrence information provided by the
term co-occurrence matrices T and T 2. We then found out that a simple
combination of both co-occurrence information has a comparable retrieval
performance to that of LSI. Furthermore, we also provided an insight into
the way LSI works. We saw that LSI computes the co-occurrence information

47

48 Chapter 5. Conclusion

in a much more efficient way than a straightforward method would. However,
we also found out that the LSI sometimes seems to make some computations
which are not needed in order to improve its retrieval performance. We also
remark that the combination of LSI and the basic vector space model is an
improvement of LSI in the sense of its retrieval performance.

Future Work

In this thesis, we made a step for a better understanding of LSI via its ex-
pansion matrix. However, many things still have to be done.

In order to compute the approximations, we had to optimise the values of the
variables α and β. It would be better to have strong theoretical foundations
which could permit us to compute those factors automatically.

We would also like to have better approximations (e.g. for the Cran col-
lection), which would provide us a better insight into the way LSI works.
Although we saw that LSI computes the term co-occurrence information in a
very efficient way, it would interesting to search for other expansion matrices
whose computations would be more efficient.

As mentioned in [2], the truncated term-term matrix is symmetric, as its
approximations in this thesis are. However, it would be sometimes better
to have an asymmetric expansion matrix. Further research in that direction
would thus be helpful.

Bibliography

[1] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern Infor-
mation Retrieval. ACM Press / Addison-Wesley, 1999.

[2] Holger Bast and Debapriyo Majumdar. Understanding spectral retrieval
via the synonymy graph. In 28th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SI-
GIR’05), pages ?–?, Salvador, Brazil, August 2005. ACM.

[3] Michael K. Bergman. The deep web: Surfacing hidden value, September
2001.

[4] Michael W. Berry, Zlatko Drmac, and Elizabeth R. Jessup. Matrices,
vector spaces, and information retrieval. SIAM Review, 41(2):335–362,
April 1999.

[5] Michael W. Berry, Susan T. Dumais, and Gavin W. O’Brien. Using
linear algebra for intelligent information retrieval. SIAM Review, pages
573–595, December 1994.

[6] The Colt Distribution. http://hoschek.home.cern.ch/hoschek/

colt/, 2002.

[7] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W.
Furnas, and Richard A. Harshman. Indexing by latent semantic analysis.

49

http://hoschek.home.cern.ch/hoschek/colt/
http://hoschek.home.cern.ch/hoschek/colt/

50 Chapter 5. Conclusion

Journal of the American Society of Information Science, 41(6):391–407,
1990.

[8] Georges Dupret. Latent concepts and the number orthogonal factors in
latent semantic analysis. In SIGIR ’03: Proceedings of the 26th annual
international ACM SIGIR conference on Research and development in
informaion retrieval, pages 221–226, New York, NY, USA, 2003. ACM
Press.

[9] Norbert Fuhr. Probabilistic models in information retrieval. The Com-
puter Journal, 35(3):243–255, 1992.

[10] G. W. Furnas, S. Deerwester, S. T. Dumais, T. K. Landauer, R. A.
Harshman, L. A. Streeter, and K. E. Lochbaum. Information retrieval
using a singular value decomposition model of latent semantic structure.
In SIGIR ’88: Proceedings of the 11th annual international ACM SIGIR
conference on Research and development in information retrieval, pages
465–480. ACM Press, 1988.

[11] F. R. Gantmacher. Matrizenrechnung II, page 87. VEB Deutscher Verlag
der Wissenschaften, Berlin, 1959.

[12] Gene H. Golub and Charles F. Van Loan. Matrix Computations, chap-
ter 2, pages 48–86. Johns Hopkins University Press, Baltimore, Mary-
land, third edition, 1996.

[13] The Data Structures Library in Java (JDSL). http://www.jdsl.org/,
2004.

[14] Karen Sparck Jones, Steve Walker, and Stephen E. Robertson. A proba-
bilistic model of information retrieval: development and comparative ex-
periments - part 2. Information Processing and Management, 36(6):809–
840, 2000.

[15] April Kontostathis and William M. Pottenger. Detecting patterns in
the LSI term-term matrix. In IEEE International Conference on Data
Mining (ICDM’02), editor, Proceedings of the Workshop on Foundations
of Data Mining and Discovery, December 2002.

[16] April Kontostathis and William M. Pottenger. Improving retrieval per-
formance with positive and negative equivalence classes of terms, 2002.

[17] April Kontostathis and William M. Pottenger. A mathematical view of
latent semantic indexing: Tracing term co-occurences, 2002.

http://www.jdsl.org/

51

[18] April Kontostathis and William M. Pottenger. A framework for under-
standing LSI performance. In Proceedings of ACM SIGIR Workshop
on Mathematical/Formal Methods in Information Retrieval (ACMSI-
GIRMF/IR ’03), 2003.

[19] April Kontostathis and William M. Pottenger. A framework for under-
standing latent semantic indexing (LSI) performance, 2004. Information
Processing and Management. Preprint.

[20] Ulrich Krengel. Einführung in die Wahrscheinlichkeitstheorie und Statis-
tik. Vieweg Verlag, 7 edition, August 2003.

[21] Jeffrey C. Lagarias, James A. Reeds, Margaret H. Wright, and Paul E.
Wright. Convergence properties of the nelder-mead simplex method in
low dimensions. SIAM Journal of Optimization, 9(1):112–147, 1998.

[22] Debapriyo Majumdar. The Optimal Dimension in Latent Semantic
Analysis. PhD thesis, Max-Planck Institut Informatik Saarbrücken,
2004. ongoing work.

[23] Christopher D. Manning and Hinrich Schütze. Foundations of Statisti-
cal Natural Language Processing, chapter 15, pages 529–574. The MIT
Press, Cambridge, Massachusetts, 1999.

[24] William Mill and April Kontostathis. Analysis of the values in the LSI
term-term matrix. Technical report, Ursinus College, 2004.

[25] J. A. Nelder and R. Mead. A simplex method for function minimization.
Computer Journal, 7:308–313, 1965.

[26] Christos H. Papadimitriou, Prabhakar Raghavan, Hisao Tamaki, and
Santosh Vempala. Latent semantic indexing: A probabilistic analy-
sis. In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, June 1-3, 1998, Seattle,
Washington, pages 159–168. ACM Press, 1998.

[27] Josiane Xavier Parreira. Information retrieval by dimension reduction -
a comparative study. Master’s thesis, Saarland University, 2003.

[28] Hinrich Schütze. Automatic word sense discrimination. Computational
Linguistics, 24(1):97–123, 1998.

	Contents
	List of Figures
	List of Tables
	Introduction
	Contribution

	Preliminaries
	Information Retrieval
	Vector Space Model
	Latent Semantic Indexing (LSI)
	Singular Value Decomposition (SVD)
	LSI in practice

	Term Similarities

	Using Term Co-occurrences
	Representing the Term-term Matrix as a Graph
	Some Properties of the (Truncated) Term-term Co-occurrence Matrix
	Related Work
	Improvements and Experiments
	Java program
	Results and Interpretation

	Conclusion

	Approximating the Truncated Term-term Matrix
	Idea
	Experiments
	Detecting a Relation between Tk and T (resp. T2)
	Approximation of Tk
	Approximation of Tk for = 0
	Approximation for = 1 and = -1
	Discussion

	Combining LSI (for = 0) with the basic vector space model
	Discussion

	Conclusion

	Conclusion
	Future Work

	Bibliography

